Manuel d'installation pour la distribution Debian GNU/Linux

Manuel d'installation pour la distribution Debian GNU/Linux

Copyright © 2004, 2005 L'équipe de l'installateur Debian

Ce document contient les instructions d'installation du système Debian GNU/Linux (nommé « sarge »), sur l'architecture Alpha (« alpha »). Des pointeurs vers d'autres sources d'informations vous permettront de tirer le meilleur parti de votre nouveau système Debian.

Note : Ce guide d'installation pour alpha est, pour l'essentiel, à jour. Nous avons néanmoins l'intention d'en réorganiser certaines parties après la publication de la version officielle, sarge. Une nouvelle version de ce manuel se trouvera sur la page de l'installateur (http://www.debian.org/devel/debian-installer/). Vous y trouverez aussi de nouvelles traductions.

Ce manuel est un logiciel libre ; vous pouvez le distribuer ou le modifier selon les termes de la Licence publique générale GNU. Veuillez consulter la licence à l'Annexe E.

Table des matières

Installer Debian GNU/Linux 3.1 sur alpha	viii
1. Bienvenue sur Debian	1
1.1. Qu'est-ce que Debian?	1
1.2. Qu'est-ce que GNU/Linux ?	
1.3. Qu'est-ce que Debian GNU/Linux ?	
1.4. Comment obtenir Debian ?	
1.5. Comment obtenir la plus récente version de ce document ?	4
1.6. Organisation de ce document	
1.7. À propos des copyrights et des licences des logiciels	5
2. Configuration nécessaire	7
2.1. Matériel reconnu	7
2.1.1. Architectures reconnues	
2.1.2. Microprocesseurs, cartes mère et cartes vidéo	
2.1.3. Cartes graphiques	
2.1.4. Processeurs multiples	
2.2. Les supports d'installation	12
2.2.1. CD-ROM, DVD-ROM	12
2.2.2. Les disques durs	12
2.2.3. Le réseau	13
2.2.4. Un*x ou système GNU	13
2.2.5. Systèmes de stockage reconnus	13
2.3. Périphériques et autres matériels	13
2.4. Acheter du matériel spécialement pour GNU/Linux	13
2.4.1. Éviter les matériels propriétaires ou fermés	
2.4.2. Fausse mémoire ou « mémoire virtuelle » à parité	
2.5. Mémoire et espace disque	
2.6. Matériel de connexion réseau	14
3. Avant d'installer Debian GNU/Linux	16
3.1. Vue générale du processus d'installation	16
3.2. Sauvegardez vos données!	17
3.3. Informations à connaître	17
3.3.1. Documentation	17
3.3.1.1. Manuel d'installation	17
3.3.1.2. Documentation du matériel	18
3.3.2. Comment trouver les sources d'informations sur le matériel ?	18
3.3.3. Compatibilité matérielle	
3.3.4. Configuration du réseau	
3.4. Satisfaire les besoins matériels minimum	
3.5. Partitionnement préalable d'une machine multisystème	
3.5.1. Partitionnement sous Tru64 UNIX	
3.5.2. Partitionnement sous Windows NT	
3.6. Configuration matérielle et système avant l'installation	
3.6.1. Problèmes matériels à surveiller	
3 6 1 1 Plus de 64 Mo de mémoire vive	24

4. Comment obtenir les supports du système d'installation ?	25
4.1. Cédéroms Debian GNU/Linux officiels	25
4.2. Télécharger les fichiers depuis les miroirs Debian	25
4.2.1. Où trouver les fichiers d'installation ?	
4.2.1.1. Alpha Installation Files	25
4.3. Préparer les fichiers pour amorcer depuis le réseau avec TFTP	
4.3.1. Activer le serveur TFTP	
4.3.2. Mettre les images TFTP en place	27
4.3.2.1. Amorçage TFTP pour Alpha	27
4.4. Installation automatisée	27
4.4.1. Installation automatique avec l'installateur Debian	27
5. Démarrer le système d'installation	29
5.1. Démarrer l'installateur sur Alpha	29
5.1.1. Le microprogramme Alpha Console	29
5.1.2. Amorcer avec TFTP	31
5.1.3. Amorcer depuis un cédérom avec une console SRM	31
5.1.4. Amorcer depuis les disquettes avec la console ARC ou ALphaBIOS	32
5.2. Paramètres d'amorçage	32
5.2.1. Paramètres pour l'installateur Debian	32
5.3. Dysfonctionnements pendant la procédure d'installation	34
5.3.1. Configuration d'amorçage	34
5.3.2. Comprendre les messages du noyau au démarrage	35
5.3.3. Rapporteur de bogues	
5.3.4. Faire un rapport de bogue	35
6. Comment utiliser l'installateur Debian ?	37
6.1. Comment marche l'installateur ?	37
6.2. Introduction aux composants	37
6.3. Utilisation des composants	40
6.3.1. L'installateur Debian et la configuration du matériel	40
6.3.1.1. Vérification de la mémoire disponible	
6.3.1.2. Choix de la langue	
6.3.1.3. Choix du pays	
6.3.1.4. Choix du clavier	
6.3.1.5. Rechercher l'image ISO de l'installateur Debian	
6.3.1.6. Configuration du réseau	
6.3.2. Partitionnement et points de montage	
6.3.2.1. Partitionner les disques	
6.3.2.2. Configuration du « Logical Volume Manager » (LVM)	
6.3.2.3. Configuration d'un périphérique à plusieurs disques (RAID logiciel)	
6.3.3. L'installation du système de base	
6.3.3.1. Installation du système de base	
6.3.4. Rendre le système amorçable	
6.3.4.1. Détecter les autres systèmes d'exploitation	
6.3.4.2. Installer aboot sur un disque dur.	
6.3.4.3. Continuer sans programme d'amorçage	
6.3.5. Comment terminer la première étape ?	
6.3.6. Divers	
6.3.6.1. Sauvegarde des journaux de l'installation	
6.3.6.2. Utilisation du shell et visualisation des journaux	
6.3.6.3. Installation par le réseau	
0.0.0.0. instantation par 10 1000aa	17

6.3.6.4. Executer base-config depuis l'installateur	50
7. Démarrer votre nouveau système Debian	51
7.1. Le moment de vérité	51
7.2. Paramétrage post-démarrage de Debian (Base)	
7.2.1. Configuration de votre fuseau horaire	
7.2.2. Utilisateurs et mots de passe	
7.2.2.1. Mot de passe pour « Root »	
7.2.2.2. Création d'un utilisateur ordinaire	52
7.2.3. Paramétrage de PPP	52
7.2.3.1. PPP sur Ethernet (PPPOE)	53
7.2.4. La configuration d'APT	53
7.2.4.1. Configurer les sources de paquets sur le réseau	54
7.2.5. Installation des paquets	
7.2.5.1. Sélection moderne des paquets avec aptitude	
7.2.6. Interrogations lors de l'installation des logiciels	
7.2.7. Configuration de l'agent de transport du courrier « MTA »	
7.3. Se connecter	57
8. Les prochaines étapes	58
8.1. Si vous débutez sous Unix	58
8.2. S'orienter dans Debian	58
8.2.1. Le système des paquets	58
8.2.2. Gestion des versions des applications	59
8.2.3. Gestion des tâches récurrentes	59
8.3. Pour aller plus loin	59
8.4. Compiler un nouveau noyau	59
8.4.1. Gestion des images du noyau	60
A. Guide de l'installation	62
A.1. Préliminaires	62
A.2. Démarrer l'installateur	62
A.2.1. Cédérom	62
A.2.2. Amorcer sur le réseau	62
A.2.3. Amorcer depuis un disque dur	62
A.3. Installation	63
A.4. Envoyez-nous un rapport d'installation	63
A.5. Et ils eurent	63
B. Partitionnement pour Debian	65
B.1. Décider des partitions et de leurs tailles	65
B.2. L'arborescence des fichiers.	
B.3. Schéma de partitionnement recommandé	
B.4. Noms des périphériques sous Linux	
B.5. Programmes de partitionnement de Debian	
B.5.1. Partitionnement pour Alpha	
C. Informations diverses	
C.1. Exemple de fichier de préconfiguration	
C.2. Périphériques Linux	
C.2.1 Régler la souris	
C.2.1. Regier la souris C.3. Ressources d'espace disque pour les tâches	
C.4. Installer Debian GNU/Linux à partir d'un système Unix/Linux	
C.4.1. Pour commencer	
C.4.2. Installer debootstrap	

C.4.3. Lancer debootstrap	81
C.4.4. Configurer le sytème de base	81
C.4.4.1. Monter les partitions	81
C.4.4.2. Configurer le clavier	82
C.4.4.3. Configurer le réseau	82
C.4.4.4. Configurer le fuseau horaire, les utilisateurs et le progreamme APT.	83
C.4.4.5. Configurer les locales	83
C.4.5. Installer un noyau	84
C.4.6. Configurer le programme d'amorçage	84
D. Administrivia	85
D.1. À propos de ce document	85
D.2. Pour contribuer à ce document	85
D.3. Principales contributions	85
D.4. Marques déposées	86
E. GNU General Public License	87
E.1. Preamble	
E.2. GNU GENERAL PUBLIC LICENSE	87
E.3. How to Apply These Terms to Your New Programs	00

Liste des tableaux

3-1.	Informations sur le matériel nécessaire pour l'installation	. 18
3-2.	Configuration matérielle minimale recommandée	. 20

Installer Debian GNU/Linux 3.1 sur alpha

Nous sommes enchantés que vous ayez choisi Debian. Nous sommes sûrs que vous trouverez cette distribution GNU/Linux de Debian remarquable. Debian GNU/Linux rassemble des logiciels libres de qualité, faits par des gens disséminés aux quatre coins du monde, et les intègre en un tout cohérent. Nous croyons que vous trouverez ce tout réellement supérieur à la simple somme des parties.

Nous comprenons bien que beaucoup d'entre vous voudront installer Debian sans lire ce manuel ; la conception de l'installateur le permet. Si vous n'avez pas le temps de le lire en entier, nous vous recommandons de lire le Guide de l'installation. Ce guide vous présentera les bases du processus d'installation et renverra au manuel pour les sujets complexes ou pour des aides en cas de problèmes. Le guide de l'installation se trouve à l' Annexe A.

Cela dit, nous espérons que vous aurez le temps de lire la plus grande partie de ce manuel. Votre installation sera facilitée par la connaissance acquise.

Chapitre 1. Bienvenue sur Debian

Ce chapitre propose un survol du projet Debian GNU/Linux. Si vous connaissez déjà l'histoire du projet Debian et de la distribution Debian GNU/Linux, vous pouvez passer au chapitre suivant.

1.1. Qu'est-ce que Debian?

Debian est une organisation composée uniquement de bénévoles, dont le but est de développer le logiciel libre et de promouvoir les idéaux de la « Free Software Foundation ». Le projet Debian a démarré en 1993, quand Ian Murdock invita tous les développeurs de logiciels à participer à la création d'une distribution logicielle, complète et cohérente, basée sur le nouveau noyau Linux. Ce petit groupe d'enthousiastes, d'abord subventionné par la Free Software Foundation (http://www.fsf.org/), et influencé par la philosophie GNU (http://www.gnu.org/gnu/the-gnu-project.html), a grandi pour devenir une organisation composée par environ 900 développeurs Debian.

Les développeurs Debian s'impliquent dans de multiples activités, par exemple, l'administration des sites web (http://www.debian.org/) et FTP (ftp://ftp.debian.org/), la conception graphique, l'analyse juridique des licences logicielles, l'écriture de la documentation et, bien sûr, la maintenance des paquets logiciels.

Pour communiquer notre philosophie et attirer des développeurs qui adhèrent à nos principes, le projet Debian a publié un certain nombre de documents qui mettent en évidence nos valeurs et expliquent ce que signifie être un développeur Debian :

- Le contrat social Debian (http://www.debian.org/social_contract) est la déclaration des engagements de Debian vis-à-vis de la communauté du logiciel libre. Quiconque est d'accord pour se conformer à ce contrat social peut devenir un développeur Debian (http://www.debian.org/doc/maint-guide/). Tout développeur Debian peut introduire de nouveaux logiciels dans Debian, à condition que ces paquets se conforment à nos critères de liberté et répondent à nos critères de qualité;
- Les directives Debian pour le logiciel libre (http://www.debian.org/social_contract#guidelines) (*Debian Free Software Guidelines*, ou *DFSG*) sont une déclaration claire et concise des critères Debian en matière de logiciel libre. Ce document a une grande influence sur le mouvement pour le logiciel libre ; il est à la base de la définition de l' Open Source (http://opensource.org/docs/definition plain.html) ;
- La charte Debian (http://www.debian.org/doc/debian-policy/) est une spécification détaillée des standards de qualité du projet Debian.

Les développeurs Debian participent aussi à d'autres projets : certains sont spécifiques à Debian, d'autres concernent tout ou partie de la communauté Linux. Voici quelques exemples :

- Le Linux Standard Base (http://www.linuxbase.org/) (LSB) est un projet dont le but est de standardiser le système GNU/Linux de base. Les concepteurs de matériels et de logiciels pourront ainsi plus facilement concevoir des applications et des pilotes de périphériques pour un système Linux générique plutôt que pour une distribution particulière;
- Le standard pour l'organisation des systèmes de fichiers (http://www.pathname.com/fhs/) (FHS) est un effort pour standardiser l'organisation du système de fichiers Linux. Le FHS permettra aux développeurs de logiciels de se concentrer sur la conception de programmes, sans avoir à se préoccuper de la façon dont le paquet sera installé dans les différentes distributions GNU/Linux;

• Debian Jr. (http://www.debian.org/devel/debian-jr/) est un projet interne dont le but est de s'assurer que Debian a quelque chose à offrir à nos utilisateurs les plus jeunes.

Pour des informations plus générales sur Debian, voir la FAQ Debian (http://www.debian.org/doc/FAQ/).

1.2. Qu'est-ce que GNU/Linux ?

Linux est un système d'exploitation, c'est-à-dire, un ensemble de programmes qui permettent d'agir sur la machine et de lancer d'autres programmes.

Un système d'exploitation comprend les programmes fondamentaux dont votre ordinateur a besoin pour échanger des instructions avec les utilisateurs : lire et écrire des données sur disque dur, sur bandes ou vers des imprimantes, contrôler l'utilisation de la mémoire, faire tourner d'autres programmes, etc. La partie la plus importante d'un système d'exploitation est le noyau. Dans un système GNU/Linux, c'est le noyau Linux. Le reste du système comprend d'autres programmes, dont beaucoup ont été écrits par, ou pour, le projet GNU. Comme le noyau Linux seul ne forme pas un système d'exploitation fonctionnel, nous préférons, pour nous référer au système que beaucoup de gens appellent de façon insouciante « Linux », utiliser le terme « GNU/Linux ».

Linux est fondé sur le système d'exploitation Unix. Dès le début, il fut conçu comme un système multitâche et multiutilisateur. Ces caractéristiques suffisent à distinguer Linux d'autres systèmes bien connus. Cependant, Linux est encore plus différent que vous ne pouvez l'imaginer. Personne ne possède Linux, contrairement à d'autres systèmes. L'essentiel de son développement est fait par des volontaires non payés.

Le développement de ce qui fut appelé plus tard GNU/Linux commença en 1984, quand la « Free Software Foundation » (http://www.gnu.org/) entreprit le développement d'un système libre de type Unix, appelé GNU.

Le projet GNU a développé un ensemble complet d'outils libres destinés à UnixTM et aux systèmes d'exploitation à la Unix, tel que Linux. Ces outils permettent aux utilisateurs d'accomplir aussi bien les tâches les plus simples (copier ou effacer un fichier) que les plus complexes (écrire et compiler des programmes, éditer de façon sophistiquée dans un grand nombre de formats).

Beaucoup de groupes et d'individus ont contribué à Linux mais le plus important d'entre eux est la « Free Software Foundation » qui a non seulement créé la plupart des outils utilisés par Linux mais aussi la philosophie et la communauté qui ont rendu Linux possible.

Le noyau Linux (http://www.kernel.org/) est apparu pour la première fois en 1991, quand un étudiant en informatique finlandais du nom de Linus Torvalds annonça une version de remplacement du noyau Minix dans le groupe de discussion Usenet comp.os.minix. Voyez la page d'histoire de Linux (http://www.li.org/linuxhistory.php) sur Linux International.

Linus Torvalds continue à coordonner le travail de centaines de développeurs, aidé par quelques personnes de confiance. Un excellent résumé hebdomadaire des discussions de la liste de diffusion linux-kernel se trouve sur Kernel Traffic (http://www.kerneltraffic.org/kernel-traffic/index.html). Des informations supplémentaires sur la liste de diffusion linux-kernel se trouvent sur la FAQ de la liste de diffusion de linux-kernel (http://www.tux.org/lkml/).

Les utilisateurs de Linux n'ont que l'embarras du choix pour les logiciels. Ils peuvent par exemple hésiter entre une douzaine d'interpréteurs de commandes, plusieurs interfaces graphiques. Cette possibilité de choix étonne souvent les utilisateurs d'autres systèmes d'exploitation, qui ne sont pas habitués à penser qu'ils peuvent changer leur interpréteur de commandes ou leur interface graphique.

Linux « plante » moins, peut plus facilement exécuter plus d'un programme à la fois, est plus sûr que beaucoup de systèmes d'exploitation. Ces avantages font de Linux le système d'exploitation dont la demande a la plus forte croissance sur le marché des serveurs. Plus récemment, Linux a aussi commencé à gagner en popularité parmi les utilisateurs, qu'ils soient en entreprise ou chez eux.

1.3. Qu'est-ce que Debian GNU/Linux ?

La philosophie et la méthodologie Debian combinées avec les outils GNU, le noyau Linux et certains logiciels libres importants, forment une distribution logicielle unique appelée Debian GNU/Linux. Cette distribution est faite d'un grand nombre de *paquets* logiciels. Chaque paquet de la distribution contient des exécutables, des scripts, de la documentation, des informations de configuration ; il possède un *responsable* dont la principale charge est de tenir le paquet à jour, de suivre les rapports de bogues et de rester en communication avec les auteurs amont du paquet. Notre très grande base d'utilisateurs, combinée avec notre système de suivi des bogues, fait que les problèmes sont détectés et résolus très rapidement.

Le souci du détail nous permet de donner une distribution paramétrable, stable et de grande qualité. On peut facilement programmer le système d'installation pour qu'il installe aussi bien un simple pare-feu qu'un poste de travail scientifique ou un serveur réseau.

Debian est particulièrement appréciée des utilisateurs avertis pour son excellence technique et pour son souci constant des besoins et des attentes de la communauté Linux. Ainsi Debian a inventé beaucoup de fonctionnalités qui sont maintenant des standards sous Linux.

Par exemple, Debian fut la première distribution Linux à proposer un système de gestion des paquets qui facilitait l'installation et la suppression des logiciels. De même, ce fut la première distribution qu'on pouvait mettre à jour sans avoir besoin d'une réinstallation.

Debian continue d'animer le développement de Linux. Son modèle de développement est exemplaire de l'excellence du modèle Open source, jusque dans les tâches très complexes de construction et de maintenance d'un système d'exploitation complet.

La fonctionnalité qui distingue le plus Debian des autres distributions Linux est son système de gestion des paquets. Ces outils donnent à l'administrateur d'un système Debian un contrôle complet sur les paquets installés sur le système ; c'est, par exemple, la possibilité d'installer un seul paquet ou celle de mettre à jour l'ensemble du système. Certains paquets peuvent aussi être protégés contre une mise à jour. Vous pouvez même dire au système quels paquets vous avez compilés vous-mêmes et quelles dépendances ils nécessitent.

Pour protéger votre système contre les « chevaux de Troie » et les logiciels malveillants, Debian vérifie que les paquets proviennent de leur responsable Debian officiel. Ceux-ci prennent un grand soin à configurer les paquets d'une manière sûre. Si des problèmes de sécurité apparaissent dans les paquets livrés, des corrections sont en général rapidement disponibles. Grâce à la possibilité de mise à jour simple, offerte par Debian, vous pouvez récupérer sur Internet et installer automatiquement les corrections concernant la sécurité.

La première et la meilleure méthode pour obtenir de l'aide pour votre système Debian GNU/Linux, et pour communiquer avec les développeurs Debian, est d'utiliser les nombreuses listes de diffusion gérées par le projet Debian (il y en a plus de 160 à ce jour). La façon la plus simple de s'abonner à une liste est de visiter la page d'abonnement aux listes de diffusion Debian (http://www.debian.org/MailingLists/subscribe) et de compléter le formulaire qui s'y trouve.

1.4. Comment obtenir Debian?

Pour plus d'informations sur la façon de télécharger Debian GNU/Linux depuis Internet, ou sur la façon de se procurer les cédéroms officiels de Debian, voyez la page web sur les façons d'obtenir Debian (http://www.debian.org/distrib/). La liste des miroirs Debian (http://www.debian.org/distrib/ftplist) répertorie tous les miroirs officiels Debian.

Après l'installation, Debian peut être facilement mis à jour. La procédure d'installation vous aidera à configurer le système de façon à ce que vous puissiez faire ces mises à jour une fois le système installé.

1.5. Comment obtenir la plus récente version de ce document ?

Ce document est continuellement révisé. N'oubliez pas de vérifier les informations de dernière minute sur la page de la version 3.1 (http://www.debian.org/releases/sarge/). Des versions à jour de ce manuel sont également disponibles sur les pages officielles du manuel d'installation (http://www.debian.org/releases/sarge/alpha/).

1.6. Organisation de ce document

Ce document est fait pour servir de manuel aux personnes qui utilisent Debian pour la première fois. Il tente de faire aussi peu appel que possible à des connaissances spéciales de la part du lecteur. Cependant, il suppose une compréhension élémentaire du fonctionnement de son matériel.

Les utilisateurs expérimentés pourront aussi trouver dans ce document des informations de référence, comme la place minimale nécessaire à une installation, des précisions au sujet du matériel reconnu par le système d'installation de Debian, etc. Nous encourageons les utilisateurs expérimentés à naviguer dans ce document.

Ce document, organisé de façon linéaire, guide l'utilisateur à travers le processus d'installation. Voici les différentes étapes de l'installation de Debian GNU/Linux, et les sections de ce document qui s'y rapportent :

- 1. Comment déterminer si votre matériel possède la configuration minimale nécessaire au système d'installation est expliqué dans le Chapitre 2 ;
- 2. Comment faire une sauvegarde de votre système, préparer et configurer le matériel avant d'installer Debian, est expliqué dans le Chapitre 3. Si vous prévoyez de pouvoir démarrer plusieurs systèmes, vous aurez besoin de partitionner votre disque dur ;
- 3. Dans le Chapitre 4, vous trouverez les fichiers nécessaires pour la méthode d'installation que vous avez choisie ;
- 4. Le Chapitre 5 décrit comment amorcer le système d'installation ; ce chapitre contient aussi des procédures de dépannage en cas de problèmes lors du démarrage ;
- 5. L'installation réelle est détaillée dans le Chapitre 6. Elle comprend le choix d'une langue, la configuration des modules pour les pilotes de périphériques, la configuration de la connexion réseau ainsi, quand on ne fait pas l'installation à partir d'un cédérom, les autres fichiers d'installation pourront être récupérés directement sur un serveur Debian —, le partitionnement des disques

- durs et l'installation d'un système minimal en état de marche ; Certains éléments concernant la manière de créer des partitions pour un système Debian sont donnés dans l' Annexe B.
- 6. Comment amorcer le système de base installé et configurer ce qui doit être configuré est expliqué dans le Chapitre 7;
- 7. Comment installer d'autres logiciels est expliqué dans la Section 7.2.5.

Une fois que vous avez installé votre système, vous pouvez lire le Chapitre 8. Ce chapitre explique où trouver plus d'informations sur Unix et Debian et comment remplacer votre noyau.

Enfin, vous trouverez des informations sur ce document et sur la manière d'y contribuer dans l'Annexe D.

1.7. À propos des copyrights et des licences des logiciels

Nous sommes sûrs que vous avez lu les licences fournies avec la plupart des logiciels commerciaux : elles disent que vous ne pouvez utiliser qu'une seule copie du logiciel et sur un seul ordinateur. La licence du système Debian GNU/Linux est totalement différente. Nous vous encourageons à copier le système Debian GNU/Linux sur tous les ordinateurs de votre école ou de votre entreprise. Passez-le à vos amis et aidez-les à l'installer sur leur ordinateur. Vous pouvez même faire des milliers de copies et les *vendre* — avec quelques restrictions cependant. La distribution Debian est en effet fondée sur le *logiciel libre*.

Qu'un logiciel soit *libre* ne veut pas dire qu'il est dépourvu de copyright et ne signifie pas que le cédérom qui contient ce logiciel doit être distribué gratuitement. Cela signifie d'une part que les licences des programmes individuels ne vous obligent pas à payer pour avoir le droit d'utiliser ou de distribuer ces programmes. Et cela signifie d'autre part que non seulement on peut étendre, adapter ou modifier un programme, mais qu'on peut aussi distribuer le résultat de ce travail.

Note: Le projet Debian met à disposition beaucoup de paquets qui ne satisfont pas à nos critères de liberté — c'est une concession pragmatique à nos utilisateurs. Ces paquets ne font pas partie de la distribution officielle, et ils sont distribués dans les parties contrib et non-free des miroirs Debian, ou bien sur des cédéroms vendus par des tiers ; voyez la FAQ Debian (http://www.debian.org/doc/FAQ/), dans les « archives FTP Debian », pour plus d'informations sur l'organisation et le contenu des archives.

Beaucoup de programmes dans le système Debian sont distribués selon les termes de la licence *GNU General Public License*, souvent simplement appelée la « GPL ». La licence *GPL* oblige à donner le *code source* du programme lorsque vous distribuez une copie binaire de ce programme ; cet article assure que tout utilisateur pourra modifier le programme. Et c'est pourquoi nous avons inclus le code source ¹ de tous les programmes présents dans le système Debian.

D'autres formes de copyright et de licence sont utilisées dans le système Debian. Vous pourrez trouver les copyrights et les licences de chaque programme dans le répertoire /usr/share/doc/nom-du-paquet/copyright une fois le paquet installé.

^{1.} Pour savoir où trouver et comment dépaqueter et construire les paquets source Debian, voyez la FAQ Debian (http://www.debian.org/doc/FAQ/), sous le titre « Basics of the Debian Package Management System ».

Pour en savoir plus sur les licences et comment Debian décide de ce qui est suffisamment libre pour être inclus dans la distribution principale, consultez les directives Debian pour le logiciel libre (http://www.debian.org/social_contract#guidelines).

Légalement, l'avertissement le plus important est que ce logiciel est fourni sans aucune garantie. Les programmeurs qui ont créé ce logiciel l'ont fait pour le bénéfice de la communauté. Il n'est donné aucune garantie quant à la pertinence du logiciel pour un quelconque usage. Cependant, puisque ce logiciel est libre, vous pouvez le modifier autant que vous le désirez — et vous pouvez ainsi profiter du travail de ceux qui ont amélioré le logiciel.

Chapitre 2. Configuration nécessaire

Cette section contient des informations sur le matériel dont vous avez besoin pour démarrer sur Debian. Vous trouverez aussi des liens vers des informations supplémentaires concernant le matériel reconnu par GNU et Linux.

2.1. Matériel reconnu

En ce qui concerne le matériel, Debian n'a pas plus d'exigences que le noyau Linux et les outils GNU. Par conséquent, toute architecture ou plateforme, sur laquelle le noyau Linux, la libc, le compilateur gcc, etc. ont été portés, et pour laquelle un portage de Debian existe, peuvent faire fonctionner Debian. Reportez-vous aux pages sur les portages http://www.debian.org/ports/alpha/ pour plus de précisions concernant les systèmes d'architecture Alpha qui ont été testés avec Debian.

Plutôt que d'essayer de décrire les différentes configurations matérielles acceptées par Alpha, cette section contient des informations générales et des pointeurs vers des informations supplémentaires.

2.1.1. Architectures reconnues

Debian 3.1 fonctionne sur onze architectures principales et sur de nombreuses variantes de celles-ci, appelées « saveurs ».

Architecture	Étiquette Debian	Sous-Architecture	Saveur
Intel x86-based	i386		vanilla
			speakup
			linux26
Motorola 680x0	m68k	Atari	atari
		Amiga	amiga
		68k Macintosh	mac
		VME	bvme6000
			mvme147
			mvme16x
DEC Alpha	alpha		
Sun SPARC	sparc		sun4cdm
			sun4u
ARM and StrongARM	arm		netwinder
			riscpc
			shark
			lart
IBM/Motorola PowerPC	powerpc	CHRP	chrp

Architecture	Étiquette Debian	Sous-Architecture	Saveur
		PowerMac	pmac
		PReP	prep
		APUS	apus
HP PA-RISC	hppa	PA-RISC 1.1	32
		PA-RISC 2.0	64
Intel ia64-based	ia64		
MIPS (grand boutien)	mips	SGI Indy/Indigo 2	r4k-ip22
			r5k-ip22
		Broadcom BCM91250A (SWARM)	sb1-swarm-bn
MIPS (petit boutien)	mipsel	Cobalt	cobalt
		DECstation	r4k-kn04
r3k-kn02			
Broadcom BCM91250A (SWARM)	sb1-swarm-bn		
IBM S/390	s390	IPL avec VM-reader et DASD	generic
		IPL avec bande	bande

Ce document décrit l'installation pour l'architecture *Alpha*. Des versions pour les autres architectures disponibles existent sur les pages Debian-Ports (http://www.debian.org/ports/).

2.1.2. Microprocesseurs, cartes mère et cartes vidéo

Vous pourrez trouver une information complète concernant les architectures DEC Alpha reconnues dans le HOWTO Linux Alpha (http://www.tldp.org/HOWTO/Alpha-HOWTO.html). Le but de cette section est de décrire les sous-architectures reconnues par les disquettes de démarrage.

Les stations Alpha sont groupées en sous-architectures car il existe un certain nombre de générations de cartes mère et de chipsets associés. Des sous-architectures différentes ont souvent des possibilités et une fabrication radicalement différentes. Par conséquent, le processus d'installation, et plus précisément, le démarrage, peuvent varier d'un système à l'autre.

Le tableau suivant énumère les sous-architectures reconnues par le système d'installation de Debian. La table indique aussi le *nom de code* pour ces sous-architectures. Vous aurez besoin de connaître ce nom de code quand vous commencerez effectivement le processus d'installation :

Hardware Type		Aliases	MILO image
ALCOR	AlphaStation 500 5/266.300	Maverick	alcor

Hardware Type		Aliases	MILO image
	AlphaStation 500 5/333500	Bret	alcor
	AlphaStation 600/266300	Alcor	alcor
	AlphaStation 600/300433	XLT	xlt
BOOK1	AlphaBook1 (laptop)	Alphabook1/Burns	book1
AVANTI	AlphaStation 200 4/100166	Mustang	avanti
	AlphaStation 200 4/233	Mustang+	avanti
	AlphaStation 205 4/133333	LX3	avanti
	AlphaStation 250 4/300	M3+	avanti
	AlphaStation 255 4/133333	LX3+	avanti
	AlphaStation 300 4/266	Melmac	avanti
	AlphaStation 400 4/166	Chinet	avanti
	AlphaStation 400 4/233300	Avanti	avanti
EB164	AlphaPC164	PC164	pc164
	AlphaPC164-LX	LX164	lx164
	AlphaPC164-SX	SX164	sx164
	EB164	EB164	eb164
EB64+	AlphaPC64	Cabriolet	cabriolet
	AlphaPCI64	Cabriolet	cabriolet
	EB64+	EB64+	eb64p
EB66	EB66	EB66	eb66
	EB66+	EB66+	eb66p
JENSEN	DEC 2000 Model 300(S)	Jensen	N/A
	DEC 2000 Model 500	Culzen	N/A
	DECpc 150	Jensen	N/A
MIATA	Personal WorkStation 433a	Miata	miata
	Personal WorkStation 433au	Miata	miata
	Personal WorkStation 466au	Miata	miata

Hardware Type		Aliases	MILO image
	Personal WorkStation 500a	Miata	miata
	Personal WorkStation 500au	Miata	miata
	Personal WorkStation 550au	Miata	miata
	Personal WorkStation 600a	Miata	miata
	Personal WorkStation 600au	Miata	miata
MIKASA	AlphaServer 1000 4/200	Mikasa	mikasa
	AlphaServer 1000 4/233266	Mikasa+	mikasa
	AlphaServer 1000 5/300	Mikasa-Pinnacle	mikasa
	AlphaServer 1000 5/300	Mikasa-Primo	mikasa
NAUTILUS	UP1000	Nautilus	N/A
	UP1100	Galaxy-Train/Nautilus Jr.	N/A
NONAME	AXPpci33	Noname	noname
	UDB	Multia	noname
NORITAKE	AlphaServer 1000A 4/233266	Noritake	N/A
	AlphaServer 1000A 5/300	Noritake-Pinnacle	N/A
	AlphaServer 1000A 5/333500	Noritake-Primo	N/A
	AlphaServer 800 5/333500	Corelle	N/A
	AlphaStation 600 A	Alcor-Primo	N/A
	Digital Server 3300	Corelle	N/A
	Digital Server 3300R	Corelle	N/A
PLATFORM 2000	P2K	P2K	p2k
RAWHIDE	AlphaServer 1200 5/xxx	Tincup/DaVinci	N/A
	AlphaServer 4000 5/xxx	Wrangler/Durango	N/A
	AlphaServer 4100 5/xxx	Dodge	N/A
	Digital Server 5300	Tincup/DaVinci	N/A
	Digital Server 7300	Dodge	N/A

Hardware Type		Aliases	MILO image
RUFFIAN	DeskStation AlphaPC164-UX	Ruffian	ruffian
	DeskStation RPL164-2	Ruffian	ruffian
	DeskStation RPL164-4	Ruffian	ruffian
	DeskStation RPX164-2	Ruffian	ruffian
	DeskStation RPX164-4	Ruffian	ruffian
	Samsung AlphaPC164-BX	Ruffian	ruffian
SABLE	AlphaServer 2000 4/xxx	Demi-Sable	N/A
	AlphaServer 2000 5/xxx	Demi-Gamma-Sable	N/A
	AlphaServer 2100 4/xxx	Sable	N/A
	AlphaServer 2100 5/xxx	Gamma-Sable	N/A
TAKARA	21164 PICMG SBC	Takara	takara
TITAN	AlphaServer DS15	HyperBrick2	N/A
	AlphaServer DS25	Granite	N/A
	AlphaServer ES45	Privateer	N/A
	UNKNOWN	Yukon	N/A
TSUNAMI	AlphaServer DS10	Webbrick	N/A
	AlphaServer DS10L	Slate	N/A
	AlphaServer DS20	Catamaran/Goldrush	N/A
	AlphaServer DS20E	Goldrack	N/A
	AlphaServer DS20L	Shark	N/A
	AlphaServer ES40	Clipper	N/A
	DP264	DP264	N/A
	SMARTengine 21264 PCI/ISA SBC	Eiger	N/A
	UNKNOWN	Warhol	N/A
	UNKNOWN	Windjammer	N/A
	UP2000	Swordfish	N/A
	XP1000	Monet/Brisbane	N/A
	XP900	Webbrick	N/A
WILDFIRE	AlphaServer GS160	Wildfire	N/A
	AlphaServer GS320	Wildfire	N/A
XL	XL-233266	XL	xl

Nous pensons que la version Debian sarge s'installe sur toutes les sous-architectures alpha, sauf les sous-architectures Ruffian avec ARC et XL ainsi que la sous-architecture Titan, qui demandent une modification des options de compilation du noyau.

2.1.3. Cartes graphiques

Debian reconnaît les interfaces graphiques dans la mesure où elles sont reconnues par le système X11 de XFree86. La plupart des cartes AGP, PCI et PCIe fonctionnent sous XFree86. Des précisions sur les bus graphiques acceptés, les cartes, les moniteurs et les souris sont disponibles sur http://www.xfree86.org/. Debian 3.1 est fourni avec la version 4.3.0 de XFree86.

2.1.4. Processeurs multiples

Cette architecture accepte les systèmes à plusieurs processeurs (« symmetric multi-processing » ou SMP). Cependant, l'image standard du noyau Debian 3.1 ne reconnaît pas le SMP. Cela ne devrait pas empêcher l'installation, puisque le noyau non-SMP devrait démarrer sur les systèmes SMP, le noyau utilisera simplement le premier CPU.

Afin de tirer profit de plusieurs processeurs, vous devrez remplacer le noyau standard Debian. Vous trouverez une discussion sur la façon de faire dans la Section 8.4. Aujourd'hui (version 2.4.27 du noyau) la façon d'activer SMP est de choisir « Symmetric multi-processing support » dans la section « General setup » quand on configure le noyau.

2.2. Les supports d'installation

Cette section précise les différents supports utilisables pour installer Debian. Il est possible par exemple d'installer debian avec un lecteur de disquettes. Un chapitre entier est consacré aux supports, le Chapitre 4 ; il indique les avantages et les désavantages de chaque support.

2.2.1. CD-ROM, DVD-ROM

Note : Chaque fois que vous lirez « cédérom » dans ce manuel, cela voudra dire aussi bien cédérom que DVD-ROM, car, du point de vue du système d'exploitation, les deux techniques sont les mêmes, mis à part quelques vieux lecteurs non standard, ni SCSI ni IDE/ATAPI.

L'installation à partir d'un cédérom est aussi possible avec certaines architectures. Sur les ordinateurs qui acceptent de démarrer sur cédérom (cédérom amorçable), vous devriez pouvoir faire une installation entièrement sans disquette . Même si votre système ne peut pas démarrer à partir d'un cédérom, vous pouvez utiliser le cédérom en même temps que les autres techniques pour installer votre système, une fois que vous avez démarré par d'autres moyens ; voyez le Chapitre 5.

L'architecture Alpha reconnaît les lecteurs de cédéroms SCSI et IDE/ATAPI si le contrôleur est reconnu par la console SRM. Cela exclut beaucoup de cartes avec contrôleur intégré mais la plupart des cartes avec puces IDE et SCSI fournies par le constructeur devraient fonctionner. Pour savoir si votre matériel est reconnu par la console SRM, voyez le SRM HOWTO (http://www.tldp.org/HOWTO/SRM-HOWTO/).

2.2.2. Les disques durs

L'installation à partir d'un disque local est possible sur beaucoup d'architectures. Cela demande qu'un autre système d'exploitation charge l'installateur sur le disque dur.

2.2.3. Le réseau

Vous pouvez aussi amorcer votre système sur le réseau.

L'installation sans disque, en utilisant le démarrage par réseau et le montage par NFS de tous les systèmes de fichiers locaux, est une autre option.

Après l'installation du système de base, vous pouvez installer le reste de votre système en vous connectant (y compris par PPP) au réseau via FTP ou HTTP.

2.2.4. Un*x ou système GNU

Si vous utilisez un système de type Unix, vous pouvez installer Debian GNU/Linux sans utiliser l'installateur qui est décrit dans la suite de ce manuel. Cette manière de faire peut servir à des utilisateurs qui possèdent des matériels non reconnus ou qui sont sur des machines qui ne peuvent se permettre un temps d'arrêt. Si cette technique vous intéresse, reportez-vous à la Section C.4.

2.2.5. Systèmes de stockage reconnus

Les disquettes de démarrage Debian contiennent un noyau construit pour permettre de faire tourner un maximum de systèmes. Malheureusement, sa taille augmente en conséquence, avec beaucoup de pilotes qui ne seront jamais utilisés (voyez la Section 8.4 pour apprendre à construire le vôtre). Cependant, le support du plus grand nombre de périphériques possible est voulu afin de s'assurer que l'on puisse installer Debian sur le plus de matériel possible.

Tout système de stockage reconnu par le noyau Linux est reconnu par le système de démarrage. Les disques IDE et SCSI sont reconnus.Il faut cependant noter que sur de nombreux systèmes, la console SRM est incapable de démarrer à partir des lecteurs IDE, et la Jensen est incapable de démarrer à partir des disquettes, voyez http://www.alphalinux.org/faq/FAQ-9.html pour plus d'informations sur le démarrage de Jensen.

2.3. Périphériques et autres matériels

Linux reconnaît une large gamme de périphériques comme les souris, les imprimantes, les scanners, les modems, les cartes réseau, les périphériques PCMCIA et USB, etc. Cependant aucun de ces périphériques n'est requis lors de l'installation du système.

2.4. Acheter du matériel spécialement pour GNU/Linux

Il existe des vendeurs qui livrent des systèmes en préinstallant (http://www.debian.org/distrib/pre-installed) Debian ou d'autres distributions de GNU/Linux. Vous paierez peut-être plus cher pour avoir

ce privilège, mais vous achetez ainsi un peu de tranquillité d'esprit, puisque vous serez certain que le matériel est bien reconnu par GNU/Linux.

Que vous achetiez ou non un système livré avec Linux, ou même un système d'occasion, il est important de vérifier que votre matériel est reconnu par le noyau Linux. Vérifiez si votre matériel est listé dans les références ci-dessus. Indiquez à votre revendeur que vous recherchez un système Linux. Soutenez les revendeurs de matériel amis de Linux.

2.4.1. Éviter les matériels propriétaires ou fermés

Certains constructeurs refusent simplement de fournir les informations qui permettraient d'écrire des pilotes pour leurs matériels. D'autres n'autorisent pas l'accès à la documentation sans accord de confidentialité, ce qui nous empêche de distribuer le code source pour Linux.

Puisque nous n'avons pas été autorisés à accéder à la documentation sur ces périphériques, ils ne fonctionneront simplement pas sous Linux. Vous pouvez nous aider en demandant à ces constructeurs de distribuer la documentation sur de tels matériels. Si suffisamment de personnes font cette demande, ils réaliseront que la communauté du logiciel libre est un marché important.

2.4.2. Fausse mémoire ou « mémoire virtuelle » à parité

Si vous demandez de la mémoire à parité dans un magasin d'informatique, vous aurez probablement des barrettes à *parité virtuelle* à la place de celles à *parité réelle*. Les barrettes SIMM à parité virtuelle peuvent souvent (mais pas toujours) être distinguées car elles n'ont qu'un composant de plus qu'une barrette SIMM normale équivalente et ce composant supplémentaire est plus petit que les autres. Les barrettes SIMM à parité virtuelle fonctionnent exactement comme de la mémoire normale. Elles ne peuvent pas vous avertir lorsque vous avez une erreur sur un simple bit comme le font les barrettes SIMM à parité réelle dans des cartes mères qui implémentent la parité. Ne payez jamais plus pour une barrette SIMM à parité virtuelle que pour une barrette normale. Attendez-vous à payer un petit peu plus cher pour des barrettes à parité réelle, car vous achetez vraiment un bit supplémentaire de mémoire pour chaque 8 bits.

Si vous voulez des informations complètes sur les problèmes liés à la mémoire Alpha, et sur la meilleure mémoire à acheter, voyez la FAQ sur le matériel PC (http://www.faqs.org/faqs/pc-hardware-faq/part1/).

Presque tous, sinon tous, les systèmes Alpha demandent une RAM à parité réelle.

2.5. Mémoire et espace disque

Vous devez posséder au moins 32MB de mémoire vive et 110MB d'espace disque. Pour un système minimal en mode console (tous les paquets standard), 250 Mo seront nécessaires. Si vous voulez installer un nombre raisonnable de logiciels, y compris le système X Window, des programmes et bibliothèques de développement, il vous faudra au moins 400 Mo. Pour une installation plus ou moins complète, vous aurez besoin de plusieurs Go.

2.6. Matériel de connexion réseau

Toute carte réseau (NIC) reconnue par le noyau Linux devrait aussi être reconnue par les disques de démarrage. Vous pourriez avoir besoin de charger le pilote de la carte en tant que module.

Chapitre 3. Avant d'installer Debian GNU/Linux

Ce chapitre traite de la préparation nécessaire à l'installation d'un système Debian, avant même tout amorçage de l'installateur. Cela concerne la sauvegarde des données, la connaissance de votre matériel et des informations nécessaires.

3.1. Vue générale du processus d'installation

D'abord, une note au sujet des réinstallations. Avec Debian, il est très rare d'avoir à réinstaller complètement son système. La cause la plus commune est sans doute une défaillance mécanique du disque dur.

Beaucoup de systèmes d'exploitation nécessitent une installation complète quand des échecs critiques se produisent ou quand on fait une mise à jour du système. Et même s'il n'est pas nécessaire de refaire entièrement une installation, les programmes que vous utilisez doivent être réinstallés pour fonctionner correctement.

Avec Debian GNU/Linux, il est bien plus probable que votre OS puisse être réparé quand les choses tournent mal, et non pas remplacé. Les mises à jour n'exigent jamais une installation complète; vous pouvez toujours les faire à partir du système existant. Les programmes sont presque toujours compatibles avec les versions successives du système. Quand la nouvelle version d'un programme exige d'autres logiciels, le système d'empaquetage fait en sorte que tous les logiciels nécessaires soient listés et installés. Beaucoup d'efforts ont été déployés pour éviter le besoin d'une réinstallation : c'est la dernière option! Et l'installateur n'est pas conçu pour faire une installation sur un système existant.

Voici les étapes qui composent le processus d'installation :

- 1. Sauvegarder toutes les données ou documents du disque dur sur lequel l'installation sera faite ;
- 2. Rassembler les informations concernant l'ordinateur, ainsi que la documentation nécessaire ;
- 3. Préparer de l'espace libre sur le disque dur ;
- 4. Télécharger l'installateur et tous les pilotes nécessaires à l'ordinateur (quand on n'utilise pas les cédéroms Debian) ;
- 5. Préparer les bandes, les disquettes ou les clés USB pour l'amorçage, ou installer les fichiers d'amorçage les utilisateurs des cédéroms Debian peuvent amorcer à partir de l'un des cédéroms ;
- 6. Amorcer l'installateur;
- 7. Choisir une langue;
- 8. Mettre en place la connexion réseau ethernet, si nécessaire ;
- 9. Créer et monter les partitions sur lesquelles Debian sera installé;
- 10. Regarder le processus automatique de téléchargement/installation/configuration du *système de base* :
- 11. Installer un *programme d'amorçage* qui puisse démarrer Debian GNU/Linux ou un autre système ;
- 12. Charger le nouveau système pour la première fois et faire les premiers réglages ;
- 13. Installer à volonté d'autres logiciels (les tâches ou des paquets).

Connaître les paquets qui sont impliqués dans chaque étape peut aider à la résolution des problèmes qui peuvent se produire durant l'installation. Voici les principaux acteurs de cette pièce :

L'installateur Debian est le sujet principal de ce manuel. Il détecte le matériel et charge les pilotes nécessaires, il met en place la connexion au réseau avec dhcp-client et il installe les paquets du système de base avec debootstrap. Il y a bien d'autres acteurs mineurs, mais l'installateur Debian a terminé sa tâche quand vous installez pour la première fois le nouveau système.

En chargeant le nouveau système, base-config ajoute les utilisateurs, règle le fuseau horaire avec tzsetup et met en place le système d'installation des paquets, avec apt-setup. Il propose ensuite de lancer tasksel qui peut installer des ensembles thématiques de paquets, ou aptitude qui permet de choisir les paquets individuellement.

Quand le travail de l'installateur est terminé, avant le premier chargement du système, vous n'avez qu'un système minimal avec ligne de commande. L'interface graphique qui affiche des fenêtres sur votre écran n'est installée que si vous l'avez demandé avec tasksel ou aptitude. Son installation est facultative car beaucoup de systèmes Debian sont des serveurs qui n'ont pas vraiment besoin d'une interface graphique pour être opérationnels.

L'installateur ne prend pas en charge le système X. Son installation et les problèmes liés ne sont pas du ressort de ce manuel.

3.2. Sauvegardez vos données!

Avant de commencer, assurez-vous d'avoir effectué une sauvegarde de chaque fichier qui se trouve actuellement sur votre système. Si c'est la première fois que vous installez un autre système d'exploitation sur votre machine, il est probable que vous devrez repartitionner votre disque dur afin de faire de la place à Debian GNU/Linux. À chaque partitionnement, il y a un risque de perdre toutes les données du disque, quel que soit le programme utilisé pour cette opération. Les programmes utilisés à l'installation sont assez fiables et la plupart ont été utilisés pendant des années, mais ils sont très puissants et un faux mouvement peut vous coûter cher. Même après la sauvegarde, soyez attentif et réfléchissez à vos réponses et à vos actions. Deux minutes de réflexion peuvent vous épargner des heures de travail inutile.

Si vous voulez pouvoir amorcer plusieurs systèmes, assurez-vous de disposer du support de distribution des autres systèmes d'exploitation présents. Surtout si vous partitionnez le disque dur où se fait l'amorçage, vous pourriez avoir à réinstaller le chargeur de votre système d'exploitation, ou dans certains cas, le système d'exploitation en entier et tous les fichiers sur les partitions touchées.

3.3. Informations à connaître

3.3.1. Documentation

3.3.1.1. Manuel d'installation

Le document que vous lisez, au format texte, HTML ou PDF.

- · install.fr.txt
- · install.fr.html

· install.fr.pdf

3.3.1.2. Documentation du matériel

Elles contiennent souvent des informations utiles pour l'utilisation et la configuration de votre matériel.

• FAQ Linux/Alpha (http://linux.iol.unh.edu/linux/alpha/faq/)

3.3.2. Comment trouver les sources d'informations sur le matériel ?

La plupart du temps, l'installateur détectera automatiquement votre matériel. Mais nous vous conseillons de bien connaître votre matériel avant de commencer l'installation.

On peut trouver des informations à partir de plusieurs sources :

- · Les manuels accompagnant chaque élément ;
- Les informations sur la configuration du BIOS de votre ordinateur. Vous pouvez accéder à ces écrans pendant le démarrage de l'ordinateur en appuyant sur une combinaison de touches. Consultez votre manuel pour connaître cette combinaison. Il s'agit souvent de la touche Suppr;
- Les boîtes et cartons de chaque pièce ;
- Les commandes système ou les outils d'un autre système d'exploitation, incluant les affichages d'un gestionnaire de fichiers. Cette source est particulièrement utile pour trouver des informations sur la mémoire vive et les disques durs;
- Votre administrateur système ou votre fournisseur d'accès à internet. Ces sources peuvent vous indiquer les réglages nécessaires à la configuration du réseau et du courrier.

Tableau 3-1. Informations sur le matériel nécessaire pour l'installation

Matériel	Informations dont vous pouvez avoir besoin
Disques durs Leur nombre	
	Leur ordre dans le système
	S'ils sont IDE ou SCSI (la plupart sont en IDE)
	L'espace disponible
	Les partitions
	Les partitions contenant d'autres systèmes d'exploitation
Moniteur	Le modèle et la marque
	Les résolutions acceptées
	Le taux de rafraîchissement horizontal
	Le taux de rafraîchissement vertical

Matériel	Informations dont vous pouvez avoir besoin
	Les profondeurs de couleurs (nombre de couleurs) acceptées
	La taille de l'écran
Souris	Le type : série, PS/2, ou USB
	Le port
	La marque
	Le nombre de boutons
Réseau	Le modèle et la marque
	Le type d'interface
Imprimante	Le modèle et la marque
	Les résolutions d'impression acceptées
Carte vidéo	Le modèle et la marque
	La mémoire vidéo disponible
	Les résolutions et les profondeurs de couleurs acceptées (à choisir parmi celles reconnues par le moniteur)

3.3.3. Compatibilité matérielle

Beaucoup de produits de marques fonctionnent sans problème sous Linux. De plus, le matériel pour Linux est amélioré chaque jour. Cependant, Linux ne peut pas utiliser autant de matériels que d'autres systèmes d'exploitation.

Voici quelques pistes pour vérifier la compatibilité de votre matériel :

- Cherchez de nouveaux pilotes sur le site web des fabricants ;
- Cherchez des informations pour une possible émulation sur les sites web ou les manuels. Des marques moins connues peuvent parfois fournir des pilotes ou des réglages pour des marques plus connues;
- Vérifiez les listes de matériel compatible avec Linux sur les sites web dédiés à votre architecture ;
- Cherchez sur internet l'expérience d'autres utilisateurs.

3.3.4. Configuration du réseau

Vous devriez demander à votre administrateur système si votre machine est connectée à un réseau

24h/24 — avec une connexion Ethernet ou équivalente, pas une connexion PPP.

- Le nom de votre machine (à choisir vous-même);
- Le nom de votre domaine ;
- L'adresse IP de votre machine ;
- · Le masque-réseau à utiliser ;
- L'adresse IP de la passerelle qui sert de routeur, si votre réseau possède une passerelle ;
- La machine de votre réseau qui servira de serveur DNS (Domain Name Service).

Pour un réseau sans fil, vous aurez besoin des informations suivantes :

- L'ESSID du réseau sans fil;
- · La clé WEP (si nécesaire).

3.4. Satisfaire les besoins matériels minimum

Une fois rassemblées les informations sur votre matériel, vérifiez que vous pouvez faire le type d'installation souhaité.

Selon vos besoins, vous pouvez continuer avec du matériel inférieur au matériel recommandé dans le tableau ci-dessous. Cependant, la plupart des utilisateurs seront frustrés s'ils ignorent ces suggestions.

Tableau 3-2. Configuration matérielle minimale recommandée

Type d'inst.	RAM	Disque dur
Sans desktop	24 mega-octets	450 mega-octets
Avec desktop	64 mega-octets	1 giga-octets
Serveur	128 mega-octets	4 giga-octets

Voici quelques exemples typiques de configuration de systèmes Debian. Vous pouvez aussi vous faire une idée de l'espace disque nécessaire à certaines tâches en lisant la Section C.3.

Serveur standard

C'est un profil de petit serveur : serveur minimaliste et sans utilitaires sophistiqués pour les utilisateurs d'un interpréteur de commandes. Il contient un serveur FTP, un serveur web, DNS, NIS et POP. Pour ces services, 100 Mo d'espace disque devraient suffire, il faut ensuite compter la place nécessaire aux données ;

Machine de bureau

Une machine de bureau classique, comprenant l'interface graphique X Window, des applications multimédia, des éditeurs, etc. Avec la tâche standard Desktop, vous aurez besoin d'environ 2 Go; Mais on peut faire avec beaucoup moins.

Travail en mode console

Une machine de bureau minimaliste, sans interface graphique X Window ni applications graphiques. Peut convenir à un portable ou à un ordinateur mobile. L'ensemble approche 140 Mo;

Developpeur

Une configuration avec tous les paquets pour faire du développement, comme Perl, C, C++, etc. La taille est d'environ 475 Mo. En supposant que vous installerez X11 et d'autres paquets supplémentaires, une taille de 800 Mo est à prévoir pour ce type de machine.

Il faut remarquer que ces mesures ne comptabilisent pas tous les fichiers, comme les fichiers des utilisateurs, la messagerie et les données. Il vaut toujours mieux prévoir large quand il s'agit de ses propres fichiers et données. En particulier, la partition /var dans Debian contient beaucoup d'informations sur l'état du système. Les fichiers de **dpkg** (contenant des informations sur tous les paquets installés) peuvent facilement atteindre 20 Mo; **apt-get** y met les paquets téléchargés avant de les installer. Au moins 100 Mo devraient être attribués à /var.

3.5. Partitionnement préalable d'une machine multisystème

Partitionner votre disque dur est simplement le fait de le diviser en plusieurs sections. Chaque section est alors indépendante des autres. C'est en gros équivalent à ajouter des cloisons dans une maison : ajouter des meubles dans une pièce n'affecte pas les autres pièces.

Si vous avez déjà un système d'exploitation sur votre machine (Tru64 (Digital UNIX), OpenVMS, Windows NT, FreeBSD...) et si vous désirez placer Linux sur le même disque, vous devrez repartitionner ce disque. Debian a besoin de partitions spécifiques. Il ne peut pas être installé sur des partitions Windows ou MacOS. Il peut partager des partitions avec d'autres systèmes Linux, mais ce point n'est pas abordé ici. Vous devez attribuer au moins une partition à la racine du système Debian.

Vous pouvez trouver des informations sur le partitionnement actuel en utilisant un outil approprié pour votre système d'exploitation. Les outils de partitionnement permettent toujours de montrer l'état actuel sans faire de changement.

En général, modifier une partition contenant déjà un système de fichiers va détruire les fichiers. Vous devriez donc toujours faire des sauvegardes avant tout partitionnement. En continuant l'analogie avec la maison, avant d'abattre une cloison, vous voudrez certainement déplacer les meubles, afin de ne pas les endommager.

Si votre ordinateur possède plusieurs disques, vous pouvez penser en affecter un à Debian. Ainsi, vous n'aurez pas besoin de partitionner le disque avant de commencer l'installation ; le partitionneur inclus dans l'installateur fera très bien l'affaire.

Si votre ordinateur ne possède qu'un seul disque, et si vous désirez remplacer complètement le système d'exploitation actuel par Debian GNU/Linux, vous pouvez aussi attendre d'être dans le processus d'installation pour partitionner le disque (voyez la Section 6.3.2.1). Cependant, cela ne marchera que si vous commencez l'installation à partir d'une bande, d'un cédérom ou de fichiers sur une machine connectée. En effet, si vous démarrez à partir de fichiers sur le disque dur, puis partitionnez ce disque dur pendant l'installation, vous effacerez les fichiers de démarrage, et il vaut alors mieux que l'installation se déroule sans accroc. Si vous voulez vraiment faire ainsi, vous devez vous assurer qu'il existe un moyen de ressusciter la machine en cas de problème, par exemple avec les bandes ou les cédéroms d'installation du système actuel.

Si votre machine possède déjà plusieurs partitions, et si suffisamment de place peut être obtenue en effaçant ou remplaçant une ou plusieurs de ces partitions, alors vous pouvez aussi attendre et utiliser le programme de partitionnement de l'installateur Debian. Vous devriez néanmoins continuer de lire les paragraphes suivants, car il existe certains cas qui obligent à partitionner avant de démarrer l'installation.

Dans tous les autres cas, vous aurez besoin de partitionner votre disque dur avant de démarrer l'installation afin de créer de l'espace disponible sur lequel les partitions pour Debian GNU/Linux seront créées. Si certaines de ces partitions sont attribuées à un autre système d'exploitation, il vaut mieux utiliser le programme de partitionnement de ce système d'exploitation. Dans ce cas, nous vous recommandons de *ne pas* essayer de créer des partitions Linux Debian avec ces outils. Il faut seulement créer les partitions dédiées à l'autre système d'exploitation.

Si vous installez plusieurs systèmes d'exploitation sur la même machine, vous devriez commencer par les autres OS avant d'installer Linux. Windows ainsi que d'autres installateurs d'OS peuvent vous empêcher de démarrer Linux, ou vous encourager à reformater les partitions non reconnues.

Vous pouvez annuler ces actions ou les éviter, mais installer en premier le système natif vous épargnera des problèmes.

Si vous avez actuellement un seul disque dur avec une seule partition (situation courante pour les ordinateurs de bureau), et si vous voulez pouvoir démarrer Debian ainsi que d'autres systèmes d'exploitation, vous aurez besoin de :

- 1. sauvegarder tout ce qui se trouve sur l'ordinateur ;
- 2. démarrer depuis le support d'installation (du système d'exploitation actuellement installé), par exemple un cédérom ou des bandes ;
- 3. utiliser les outils de partitionnement natifs pour créer soit de nouvelles partitions, soit de l'espace libre pour Debian GNU/Linux ;
- 4. installer le système d'exploitation natif sur sa nouvelle partition ;
- 5. démarrer ce système pour vérifier que tout fonctionne, et pour télécharger les fichiers de démarrage pour l'installateur Debian ;
- 6. démarrer l'installateur Debian pour commencer à installer Debian.

3.5.1. Partitionnement sous Tru64 UNIX

Tru64 UNIX, anciennement appelé Digital UNIX, lui-même anciennement appelé OSF/1, utilise un schéma de partitionnement semblable aux « étiquettes de disque » des BSD, ce qui lui permet d'avoir jusqu'à huit partitions par disque. Les partitions sont numérotées de 1 à 8 avec Linux, et « lettrées » de « a » à « h » pour UNIX. Les noyaux Linux 2.2 et supérieurs font toujours correspondre 1 à « a », 2 à « b », etc. Par exemple, rz0e pour Tru64 UNIX serait certainement sda5 pour Linux.

Les partitions pour disque Tru64 peuvent se chevaucher. De plus, si le disque est utilisé par Tru64, la partition « c » doit recouvrir le disque entier (et donc chevaucher toutes les autres partitions non vides). Sous Linux, cela implique que sda3 soit identique à sda (sdb3 à sdb s'il existe, etc). Pour l'instant, partman, le partitionneur de l'installateur Debian, ne gère pas le chevauchement des partitions. Vous devez donc éviter d'utiliser un même disque par Tru64 et Debian. Les partitions sur disque Tru64 peuvent être montées dans Debian, une fois l'installation terminée.

Une autre contrainte est que, par convention, la partition « a » commence au début du disque, afin qu'elle inclue toujours le bloc d'amorçage qui contient les étiquettes. Si vous souhaitez démarrer

Debian depuis ce disque, il faut qu'elle contienne au moins 2 Mo pour pouvoir y mettre aboot et peut-être un noyau. Notez que cette partition n'est nécessaire que pour des raisons de compatibilité; vous ne devez pas y mettre un système de fichiers, sous peine de détruire des données.

Il est possible, et d'ailleurs assez raisonnable, de partager une partition d'échange entre UNIX et Linux. Dans ce cas, il faut lancer **mkswap** sur cette partition à chaque changement de système, car UNIX détruit la signature de la partition. Vous pouvez faire exécuter **mkswap** par les scripts au démarrage de Linux avant d'ajouter la zone d'échange avec la commande **swapon -a**.

Si vous souhaitez monter des partitions UNIX sous Linux, notez que Digital UNIX peut utiliser deux systèmes de fichiers différents, UFS et AdvFS, et Linux ne reconnaît que le premier.

3.5.2. Partitionnement sous Windows NT

Windows NT utilise une table des partitions similaire aux PC. Si vous manipulez des partitions FAT ou NTFS existantes, il est recommandé d'utiliser les outils fournis avec Windows NT (ou le programme de partitionnement se trouvant dans le menu de configuration de l'AlphaBIOS). Sinon, il n'est pas nécessaire de partitionner depuis windows, et les outils de Linux feront souvent un meilleur travail. Notez que, lorsque vous lancez NT, l'administrateur de disques (*Disk Administrator*) peut vous conseiller d'écrire une « signature inoffensive » sur les partitions non Windows, si vous en avez. Ne le laissez *jamais* faire cela, car la signature détruit les informations sur la partition.

Si vous décidez de démarrer Linux depuis une console ARC/AlphaBIOS/ARCSBIOS, vous aurez besoin d'une (petite) partition FAT pour MILO, 5 Mo est généralement suffisant. Si Windows NT est installé, sa partition de démarrage de 6 Mo peut très bien faire l'affaire. La version sarge ne sait pas installer MILO. Si MILO est déjà installé sur le système ou si MILO est sur un autre support, Debian peut être amorcée depuis ARC.

3.6. Configuration matérielle et système avant l'installation

Cette section passe en revue les réglages matériels que vous devrez peut-être effectuer avant d'installer Debian. En général, cela implique de vérifier, et parfois de modifier, les réglages du micrologiciel (BIOS, etc.) sur votre système. Le micrologiciel est le logiciel de base utilisé par le matériel ; il est plus spécifiquement exécuté pendant le processus d'amorçage (après la mise sous tension). Les problèmes matériels connus qui affectent la fiabilité de Debian GNU/Linux sur votre système sont aussi mis en lumière.

3.6.1. Problèmes matériels à surveiller

Beaucoup de personnes ont essayé de faire fonctionner leur processeur 90 MHz à 100 MHz, etc. Cela fonctionne parfois, mais le système devient sensible à la température et à d'autres facteurs et cela peut réellement l'endommager. Un des auteurs de ce document a changé la fréquence de son propre système pendant un an et puis le système a commencé à interrompre le programme **gcc** par un signal inattendu pendant qu'il compilait le noyau du système d'exploitation. Baisser la vitesse du processeur à sa valeur de départ a résolu le problème.

Le compilateur **gcc** est souvent le premier à subir des dysfonctionnements à cause d'une mémoire RAM défectueuse (ou d'autres problèmes matériels qui changent les données de manière imprévi-

sible), parce qu'il construit des structures de données gigantesques qu'il traverse plusieurs fois. Une erreur dans ces structures de données le fera exécuter une instruction illégale ou accéder à une adresse inexistante. Le symptôme de ce défaut est la mort de **gcc** par un signal inattendu.

3.6.1.1. Plus de 64 Mo de mémoire vive

Le noyau Linux peut ne pas toujours détecter la quantité de mémoire vive. Si c'est le cas, veuillez regarder : Section 5.2.

Chapitre 4. Comment obtenir les supports du système d'installation ?

4.1. Cédéroms Debian GNU/Linux officiels

La méthode la plus facile pour installer Debian GNU/Linux est sûrement celle utilisant les cédéroms officiels (voyez la page des revendeurs de cédéroms (http://www.debian.org/CD/vendors/) pour les acheter. Vous pouvez aussi télécharger les images ISO à partir d'un miroir de Debian et fabriquer vos propres cédéroms, si vous avez une connexion rapide et un graveur (cf. la page des cédéroms Debian (http://www.debian.org/CD/) pour des instructions détaillées). Si vous possédez un jeu de cédéroms et si votre machine peut s'amorcer à partir d'un cédérom, vous pouvez aller directement au Chapitre 5 ; un effort particulier a été fait pour s'assurer que les fichiers les plus communément demandés soient présents sur les cédéroms. L'ensemble des paquets binaires nécessite plusieurs cédéroms, mais vous aurez rarement besoin de paquets qui se trouvent au delà du troisième cédérom. Il est aussi possible d'utiliser la version DVD, ce qui sauve de la place sur vos étagères et vous évite le fastidieux enregistrement de tous les cédéroms.

Si vous avez des cédéroms alors que votre machine ne sait pas amorcer à partir d'un cédérom, vous pouvez utiliser une autre stratégie, p. ex. démarrage sur le réseau, ou bien encore, chargement manuel du noyau et premier démarrage de l'installateur. Les fichiers requis pour ces différents amorçages sont aussi sur le cédérom ; l'archive réseau de Debian et l'organisation des répertoires du cédérom sont identiques. Ainsi, lorsqu'un chemin d'archive est demandé pour un fichier particulier requis pour amorcer, cherchez ce fichier dans le même répertoire ou sous-répertoire de votre cédérom.

Une fois l'installateur amorcé, il est capable d'obtenir tous les autres fichiers nécessaires à partir du cédérom.

Si vous n'avez pas de jeu de cédéroms, il vous sera nécessaire de télécharger les fichiers du système d'installation et de les placer sur un ordinateur connecté que vous pourrez utiliser pour amorcer l'installateur.

4.2. Télécharger les fichiers depuis les miroirs Debian

Pour trouver le miroir le plus proche (et sans doute le plus rapide), voyez la liste des miroirs Debian (http://www.debian.org/distrib/ftplist).

Lorsque vous téléchargez les fichiers depuis un miroir Debian, assurez-vous de bien être en mode *binaire* et non en mode texte ou en mode automatique.

4.2.1. Où trouver les fichiers d'installation?

Sur tous les miroirs Debian, les images pour l'installation sont situées dans le répertoire debian/dists/sarge/main/installer-alpha/current/images/ (http://http.us.debian.org/debian/dists/sarge/main/installer-alpha/current//images) — le fichier MANIFEST (http://http.us.debian.org/debian/dists/sarge/main/installer-alpha/current//images/MANIFEST) liste toutes les images.

4.2.1.1. Alpha Installation Files

Si vous décidez d'amorcer depuis une console microprogramme ARC en utilisant **MILO**, il vous sera nécessaire de préparer une disquette contenant **MILO** et **LINLOAD.EXE** à partir des images de disquettes adéquates. Reportez-vous à Section 5.1.1 sur les microprogrammes Alpha et les chargeurs d'amorçage. Les images de disquettes peuvent être trouvées dans le répertoire MILO sous le nom de milo_subarchitecture.bin.

Malheureusement, ces images MILO n'ont pu être testées et peuvent ne pas fonctionner sur quelques sous-architectures. Si c'est le cas, essayez de copier le fichier binaire MILO sur une disquette (ftp://ftp.debian.org/debian/dists/sarge/main/disks-alpha/current/MILO/). Remarquez que ces programmes MILO n'acceptent pas la version de ext2 avec les « sparse superblocks ». Vous ne pouvez donc pas les utiliser pour charger une version de noyau avec un système de fichiers très récent. Comme moyen de contournement, vous pouvez déposer votre noyau sur une partition FAT juste après le programme MILO.

Les binaires **MILO** sont spécifiques à chaque plate-forme. Voyez Section 2.1.2 pour déterminer l'image appropriée de **MILO** pour votre plate-forme Alpha.

4.3. Préparer les fichiers pour amorcer depuis le réseau avec TFTP

Si votre machine est connectée à un réseau local, vous pouvez l'amorcer directement à partir d'une autre machine de ce réseau en utilisant TFTP. Pour cela, les fichiers d'amorçage doivent être placés à un endroit spécifique de cette machine et elle doit savoir amorcer votre propre machine.

Vous devez configurer un serveur TFTP et, pour beaucoup de machines, un serveur BOOTP.

À la différence du microprogramme Open Firmware que l'on trouve sur les machines SPARC et PowerPC, la console SRM n'utilisera *pas* RARP pour obtenir les adresses IP; vous devrez donc utiliser BOOTP pour amorcer votre Alpha ¹ depuis le réseau. Vous pouvez aussi entrer directement depuis la console VRM la configuration IP des interfaces réseau.

Le protocole trivial de transfert des fichiers (« Trivial Transfert File Protocol » ou TFTP) est utilisé pour transférer l'image d'amorçage au client. Théoriquement, tout serveur sur les plateformes qui implémentent ces protocoles peut être utilisé. Dans les exemples qui vont suivre, on donnera les commandes pour SunOS 4.x, SunOS 5.x (mieux connu sous le nom de Solaris) et GNU/Linux.

4.3.1. Activer le serveur TFTP

Pour faire fonctionner le serveur TFTP, vous devez vous assurer au préalable que **tftpd** est activé. Ce dernier est généralement activé grâce à la ligne suivante dans /etc/inetd.conf:

tftp dgram udp wait root /usr/sbin/tcpd in.tftpd /tftpboot

Les paquets Debian, quand ils sont installés, placent correctement cette ligne.

^{1.} Les systèmes Alpha peuvent aussi s'amorcer depuis le réseau en utilisant MOP DECNet (« Maintenance Operations Protocol », protocole des opérations de maintenance), mais l'on n'en dira rien ici. Il est vraisemblable que votre opérateur local OpenVMS sera ravi de vous assister si vous ne pouvez résister à l'envie d'utiliser MOP pour amorcer Linux sur votre Alpha.

Lisez ce fichier et mémorisez le répertoire passé en argument à **in.tftpd**; vous en aurez besoin ultérieurement. L'option -1 autorise certaines versions de **in.tftpd** à enregistrer toutes les requêtes dans le journal du système; c'est extrêmement pratique en cas d'erreur d'amorçage. Si vous avez dû modifier /etc/inetd.conf, vous devrez le signaler au processus **inetd**. Sur une machine Debian, lancez /etc/init.d/inetd reload; sur les autres machines, retrouvez le numéro de processus de **inetd** et tuez-le avec la commande kill -HUP inetd-pid.

4.3.2. Mettre les images TFTP en place

Ensuite, placez les images TFTP dont vous avez besoin (décrites dans la Section 4.2.1) dans le répertoire des images d'amorce de **tftpd**. Généralement, ce répertoire s'appelle /tftpboot. Vous aurez à faire un lien depuis ce fichier vers le fichier que **tftpd** utilisera pour amorcer le client. Malheureusement, le nom du fichier est déterminé par le client TFTP et il n'y a pas vraiment de standard.

4.3.2.1. Amorçage TFTP pour Alpha

Sur Alpha, vous devez spécifier le nom de fichier (le chemin étant relatif au répertoire de l'image d'amorçage) en utilisant l'argument -file de la commande boot de SRM ou en configurant la variable d'environnement BOOT_FILE. Vous pouvez aussi passer le nom de fichier via BOOTP (pour dhcpd ISC, utilisez la directive filename). À la différence de Open Firmware, il n'y a pas de nom de fichier par défaut dans SRM donc vous devez utiliser une de ces méthodes pour spécifier un nom de fichier.

4.4. Installation automatisée

Pour installer Debian sur de nombreux ordinateurs, il est possible d'automatiser complètement l'installation en utilisant les paquets Debian suivants : fai (qui utilise un serveur d'installation), replicator, systemimager, autoinstall et l'installateur Debian lui-même.

4.4.1. Installation automatique avec l'installateur Debian

L'installateur Debian peut automatiser des installations grâce à des fichiers de préconfiguration. Un fichier de préconfiguration peut se trouver sur le réseau ou sur un support amovible. Il sert à répondre aux questions qui seront posées pendant l'installation.

La plupart des dialogues de l'installateur Debian peuvent être préconfigurés de cette manière. Il y a cependant des exceptions notables. On peut partitionner tout un disque ou partitionner seulement une partie de l'espace disponible ; on ne peut pas utiliser des partitions existantes . On ne peut pas installer RAID et LVM en utilisant cette méthode. Il n'est pas possible non plus de préconfigurer les paramètres des modules du noyau, à l'exception des modules réseau.

Le format de ce fichier est celui de la commande debconf-set-selections. Un exemple fonctionnel et bien documenté, que vous pouvez modifier, se trouve dans Section C.1.

Une façon simple de créer le fichier complet est de faire une installation, puis d'utiliser la commande debconf-get-selections qui se trouve dans le paquet debconf-utils pour copier les données de debconf et cdebconf dans /var/log/debian-installer/cdebconf et les mettre dans un seul fichier :

\$ debconf-get-selections --installer > fichier

\$ debconf-get-selections >> fichier

Cependant, un fichier créé de cette manière possédera des éléments qu'on ne doit pas préconfigurer ; le fichier dans Section C.1 est un meilleur point de départ pour la plupart des utilisateurs.

Une fois que vous avez créé ce fichier de préconfiguration, vous pouvez le modifier, le placer sur un serveur web ou le copier sur le support de l'installateur. Mais, quelque soit sa place, vous devez dire à l'installateur de l'utiliser au moment de l'amorçage.

Pour que l'installateur utilise un fichier de préconfiguration sur le réseau, il faut ajouter preseed/url=http://url/to/preseed.cfg aux paramètres d'amorçage du noyau. Bien sûr, la préconfiguration ne fonctionnera pas avant que l'installateur n'ait installé le réseau et récupéré le fichier ; le mieux est que l'installateur utilise DHCP et installe le réseau sans poser de questions. On peut aussi régler la priorité à « critique » pour éviter toute question pendant l'installation du réseau. Voyez Section 5.2.1.

Pour mettre un fichier de préconfiguration sur un cédérom, il faut recréer l'image ISO et y ajouter le fichier. Voyez la page de manuel de mkisofs. Vous pouvez aussi mettre le fichier de préconfiguration sur une disquette et utiliser preseed/file=/floppy/preseed.cfg

Chapitre 5. Démarrer le système d'installation

5.1. Démarrer l'installateur sur Alpha

5.1.1. Le microprogramme Alpha Console

Le microprogramme pour la console est stocké dans une ROM flash. Il est lancé lorsqu'un système Alpha est allumé ou remis à zéro. Il y a deux sortes de spécifications utilisées sur les systèmes Alpha et ainsi deux classes du microprogramme console disponibles :

- La console SRM basée sur une spécification du sous-système console Alpha et qui fournit un environnement opérationnel pour OpenVMS, Tru64 UNIX et les systèmes d'exploitations de type Linux;
- Les consoles ARC, AlphaBIOS ou ARCSBIOS, basées sur les spécifications « Advanced RISC Computing »(ARC) qui fournissent un environnement opérationnel pour Windows NT.

Du point de vue de l'utilisateur, la plus grosse différence entre SRM et ARC est que le choix de la console induit le schéma de partitionnement du disque sur lequel vous choisirez d'amorcer.

ARC requiert l'utilisation d'une table de partition MS-DOS (créée par **cfdisk**) pour le disque amorçable. Les tables des partitions MS-DOS sont donc les formats de partition « natifs » lorsque l'on amorce avec ARC. En effet, depuis qu' AlphaBIOS contient un partititionneur de disque, vous préférerez peut-être partitionner vos disques depuis le menu du microprogramme avant d'installer Linux.

Inversement, SRM est *incompatible* avec les tables des partitions MS-DOS ¹. Depuis que Unix Tru64 utilise le format des disques BSD, c'est le format « natif » des partitions pour les installations à partir de SRM.

GNU/Linux est le seul système d'exploitation sur Alpha qui peut être amorcé à partir des deux types de console, mais la version Debian GNU/Linux 3.1 ne peut s'amorcer qu'à partir d'un système basé sur SRM. Si vous possédez un Alpha sans SRM, si vous voulez pouvoir lancer aussi Windows NT ou si votre programme d'amorçage demande une console ARC pour initialiser le BIOS, vous ne pourrez pas utiliser l'installateur Debian. Vous pourrez toujours lancer Debian GNU/Linux 3.1 sur de tels systèmes en utilisant un autre support d'installation. Par exemple, vous pouvez installer Debian woody et faire une mise à jour.

Comme **MILO** n'est pas disponible sur tous les systèmes Alpha actuels (Février 2000) et comme il n'est plus nécessaire d'acheter une license OpenVMS ou Tru64 Unix pour avoir un microprogramme SRM sur les anciens Alpha, il est recommandé d'utiliser SRM dès que possible.

Le tableau suivant résume les combinaisons type de système / console disponibles (cf. Section 2.1.2 pour les noms des types de système). Le mot « ARC » ci-dessous désigne toute console compatible avec ARC.

Système	Console acceptée
alcor	ARC ou SRM
avanti	ARC ou SRM
book1	SRM

^{1.} Précisément, le format du secteur d'amorçage requis par la spécification du sous-système console entre en conflit avec le placement de la table des partitions MS-DOS.

Système	Console acceptée
cabriolet	ARC ou SRM
dp264	SRM
eb164	ARC ou SRM
eb64p	ARC ou SRM
eb66	ARC ou SRM
eb66p	ARC ou SRM
jensen	SRM
lx164	ARC ou SRM
miata	ARC ou SRM
mikasa	ARC ou SRM
mikasa-p	SRM
nautilus	ARC (voyez le manuel de la carte mère) ou
	SRM
noname	ARC ou SRM
noritake	SRM
noritake-p	SRM
pc164	ARC ou SRM
rawhide	SRM
ruffian	ARC
sable	SRM
sable-g	SRM
sx164	ARC ou SRM
takara	ARC ou SRM
xl	ARC
xlt	ARC

D'une façon générale, aucune de ces consoles ne peut amorcer Linux directement ; il est donc nécessaire d'avoir recours à un programme d'amorçage intermédiaire. Pour la console SRM, on utilise **aboot**, un programme d'amorçage léger et indépendant de la plateforme. Voyez l'obsolète SRM HOWTO (http://www.tldp.org/HOWTO/SRM-HOWTO/) pour d'autres informations.

MILO est lui-même une console, qui remplace ARC ou SRM en mémoire. MILO peut être amorcé à la fois par ARC et SRM et c'est même la seule façon de démarrer Linux à partir d'une console ARC. MILO est dépendant de la plateforme (un programme différent de MILO est nécessaire pour chaque système) et n'existe, pour le support ARC, que pour les systèmes listés ci-dessus. Reportez-vous aussi au MILO HOWTO (http://www.tldp.org/HOWTO/MILO-HOWTO.html), malheureusement plus très à jour.

aboot est un petit programme d'amorçage, indépendant de la plateforme et qui fonctionne uniquement avec SRM. Reportez-vous au SRM HOWTO (http://www.tldp.org/HOWTO/SRM-HOWTO/) (hélas plus très à jour) pour obtenir d'autres informations sur **aboot**.

La majorité des AlphaServer, tous les serveurs et tous les postes de travail contiennent à la fois SRM et AlphaBIOS dans leur microprogramme. Pour les machines « half-flash » comme les nombreuses cartes d'évaluation, il est possible de passer d'une version à l'autre par flashage du microprogramme. Ainsi, lorsque SRM est installé, il est possible d'exécuter ARC/AlphaBIOS depuis une disquette (en

utilisant la commande **arc**). Pour les raisons mentionnées précédemment, nous recommandons de passer à SRM avant d'installer Debian.

Comme pour toutes les autres architectures, vous devez installer la révision la plus récente du microprogramme ² avant d'installer Debian. Pour les Alpha, la mise à jour du microprogramme peut s'obtenir à partir des mises à jour du Firmware Alpha (http://ftp.digital.com/pub/DEC/Alpha/firmware/).

5.1.2. Amorcer avec TFTP

Pour SRM, les interfaces Ethernet sont nommées avec le préfixe **ewa** et seront affichées en sortie de la commande **show dev**, comme ceci :

```
>>> show dev
ewa0.0.0.9.0 EWA0 08-00-2B-86-98-65
ewb0.0.0.11.0 EWB0 08-00-2B-86-98-54
ewc0.0.0.2002.0 EWC0 00-06-2B-01-32-B0
```

Vous devez commencer par configurer le protocole d'amorçage :

```
>>> set ewa0_protocol bootp
```

puis vérifier que le type du média est correct :

```
>>> set ewa0_mode mode
```

Vous pouvez obtenir une liste de modes valides avec >>>set ewa0_mode.

Ensuite, pour amorcer sur la première interface Ethernet, vous devrez taper :

```
>>> boot ewa -flags ""
```

L'amorçage se fera avec les paramètres par défaut du noyau qui sont dans l'image netboot.

Si vous souhaitez utiliser une console série, vous *devez* passer le paramètre console= au noyau. Cela peut être fait avec l'argument -flags de la commande SRM boot. Les ports série portent le même nom que leur fichier correspondant dans /dev. Et si vous ajoutez des paramètres du noyau, vous devez répéter certaines options par défaut nécessaires aux images de l'installateur Debian. Par exemple, pour amorcer depuis ewa0 en utilisant la console sur le premier port série, vous devrez saisir :

```
>>> boot ewa0 -flags "root=/dev/ram ramdisk_size=16384 console=ttyS0"
```

5.1.3. Amorcer depuis un cédérom avec une console SRM

Exécutez

```
>>> boot xxxx -flags 0
```

^{2.} À l'exception de Jensen, où les versions du microprogramme plus récentes que la version 1.7 ne reconnaissent pas linux — voyez http://www.alphalinux.org/faq/FAQ-9.html pour plus d'informations.

où xxxx est votre lecteur de cédérom en notation SRM.

5.1.4. Amorcer depuis les disquettes avec la console ARC ou ALphaBIOS

Dans le menu de « OS selection », choisissez **linload.exe** comme programme d'amorçage et **milo** comme chemin vers le système d'exploitation. L'amorçage se fera depuis cette nouvelle entrée.

5.2. Paramètres d'amorçage

Les paramètres d'amorçage sont des paramètres passés au noyau Linux pour s'assurer que les périphériques seront correctement pris en compte. Dans la plupart des cas le noyau détecte les périphériques, mais parfois vous devez l'aider un peu.

Si c'est la première fois que vous démarrez le système, essayez les paramètres par défaut ; autrement dit, ne donnez pas de paramètre et vérifiez que cela fonctionne correctement. Ce devrait être le cas. Sinon, vous pouvez redémarrer et donner les paramètres nécessaires à votre matériel.

Toutes les informations nécessaires sur les paramètres d'amorçage sont disponibles dans le HOWTO Linux BootPrompt (http://www.tldp.org/HOWTO/BootPrompt-HOWTO.html) ; la présente section contient seulement un résumé des paramètres les plus utilisés. Certains « trucs » sont donnés dans la Section 5.3.

Lorsque le noyau démarre, un message

Memory:availk/totalk available

doit être affiché assez tôt durant le processus. *Total* doit correspondre à la quantité de mémoire vive (exprimée en kilo-octets) que contient votre machine. Si la quantité de mémoire vive détectée ne correspond pas à la quantité de mémoire de votre machine, vous devrez utiliser le paramètre mem=ram, où ram est la taille mémoire de votre machine, suivie par « k » pour kilo-octets ou « m » pour mégaoctets. Par exemple, mem=65536k et mem=64m sont équivalents pour forcer l'utilisation de 64 Mo de mémoire vive.

Si vous démarrez avec la console série, le noyau la détecte automatiquement. Si une carte vidéo (« framebuffer ») et un clavier sont également connectés à l'ordinateur que vous voulez démarrer à l'aide de la console série, vous devrez peut-être passer l'option console=device au noyau, où device est votre interface série, c'est-à-dire quelque chose comme ttys0.

5.2.1. Paramètres pour l'installateur Debian

Le système d'installation reconnaît des paramètres d'amorçage ³ qui peuvent être utiles.

debconf/priority

Ce paramètre sert à déclarer le niveau de la priorité à partir de laquelle les messages seront affichés

^{3.} Il faut savoir que le noyau accepte un maximum de huit options ligne de commandes et huit variables d'environnement. Et les options ajoutées par l'installateur sont comprises dans ces chiffres. S'il y a dépassement, les noyaux 2.4 ignorent les options en trop et les noyaux 2.6 paniquent.

Dans l'installation par défaut, ce paramètre est égal à **debconf/priority=high**. Cela signifie que les messages avec des priorités « high » et « critical » seront affichés, mais non les messages avec des priorités « medium » et « low ». Si des problèmes apparaissent, l'installateur fixe la priorité comme il est nécessaire.

Si vous ajoutez le paramètre debconf/priority=medium au démarrage, vous obtiendrez le menu d'installation et un contrôle plus fin du processus d'installation. Si vous ajoutez debconf/priority=low, tous les messages seront affichés, c'est l'équivalent de la méthode de démarrage *expert*. Si vous utilisez debconf/priority=critical, seuls les messages critiques seront affichés et l'installateur fera ce qu'il faut pour tout faire correctement.

DEBIAN_FRONTEND

Ce paramètre contrôle le type d'interface qu'utilisera l'installateur. Voici les valeurs possibles actuellement :

- DEBIAN_FRONTEND=noninteractive
- DEBIAN_FRONTEND=text
- DEBIAN_FRONTEND=newt
- DEBIAN_FRONTEND=slang
- DEBIAN_FRONTEND=ncurses
- DEBIAN_FRONTEND=bogl
- DEBIAN_FRONTEND=gtk
- DEBIAN_FRONTEND=corba

L'interface par défaut est **DEBIAN_FRONTEND=newt**. **DEBIAN_FRONTEND=text** est peut-être préférable pour les installations avec une console série. Les autres interfaces ne sont pas disponibles sur les supports d'installation, et ne sont pas utiles pour l'instant.

BOOT_DEBUG

Si l'on donne la valeur 2 à ce paramètre, le processus d'amorçage de l'installateur sera enregistré avec beaucoup de détails dans les journaux du démarrage. Si l'on donne la valeur 3, des interpréteurs seront disponibles à des endroits stratégiques du processus d'amorçage. Il faut quitter (exit) les interpréteurs pour revenir au processus d'amorçage.

BOOT_DEBUG=0

valeur par défaut.

BOOT_DEBUG=1

Un peu plus bavard qu'habituellement.

BOOT_DEBUG=2

Beaucoup d'informations.

BOOT_DEBUG=3

À certains moments du processus de démarrage, un shell est exécuté pour permettre un débogage approfondi. Quittez le shell pour revenir au processus de démarrage.

INSTALL_MEDIA_DEV

La valeur de ce paramètre donne l'adresse du périphérique sur lequel se trouve l'installateur Debian. Par exemple, INSTALL_MEDIA_DEV=/dev/floppy/0

La disquette de démarrage recherche la disquette racine sur toutes les disquettes et sur toutes les clés USB. Grâce à ce paramètre, on peut limiter cette recherche à un seul périphérique.

debian-installer/framebuffer

Certaines architectures utilisent le tampon vidéo du noyau afin d'offrir l'installation en plusieurs langues. Si le tampon vidéo provoque des problèmes sur votre système, vous pouvez utiliser le paramètre debian-installer/framebuffer=false pour le désactiver. Les symptômes de ce problème sont des messages d'erreur au sujet de bterm ou bogl, un écran noir, ou un blocage quelques minutes après le début de l'installation.

debian-installer/probe/usb

On peut empêcher la recherche de périphériques USB avec le paramètre debian-installer/probe/usb=false.

netcfg/disable_dhcp

L'installateur Debian recherche automatiquement la configuration du réseau avec DHCP. Si la recherche réussit, vous n'aurez plus la possibilité de vérifier et de modifier les valeurs obtenues. Vous pouvez obtenir la configuration manuelle du réseau que si la recherche avec DHCP a échoué.

S'il y a un serveur DHCP sur votre réseau local et si vous voulez l'ignorer parce qu'il donne, par exemple, des valeurs fausses, vous pouvez utiliser le paramètre netcfg/disable_dhcp=true pour le désactiver et indiquer vous-même les valeurs.

hw-detect/start_pcmcia

Fixez ce paramètre à **false** pour empêcher de démarrer les services PCMCIA. Certains portables connaissent des problèmes avec les PCMCIA.

preseed/url

Indique l'adresse du fichier de préconfiguration à télécharger pour automatiser l'installation. Voyez la Section 4.4.

preseed/file

Indique le chemin d'un fichier de préconfiguration à utiliser pour automatiser l'installation. Voyez la Section 4.4.

ramdisk_size

Si vous utilisez un noyau de la série 2.2.x, vous aurez besoin de déclarer ramdisk_size=13000

5.3. Dysfonctionnements pendant la procédure d'installation

5.3.1. Configuration d'amorçage

Si vous avez des problèmes et que le noyau se bloque pendant la phase d'amorçage, qu'il ne reconnaisse pas vos périphériques ou bien que les disques ne soient pas reconnus correctement, la première chose à faire est de vérifier les paramètres d'amorçage, ainsi qu'il a été discuté dans la Section 5.2.

Si vous amorcez avec votre propre noyau plutôt que celui fourni par l'installateur, assurez-vous que **CONFIG_DEVFS** ne soit pas déclaré dans le noyau. L'installateur n'est pas compatible avec **CONFIG_DEVFS**.

Les problèmes sont souvent résolus en retirant périphériques et extensions et en essayant de réamorcer.

Si votre machine possède beaucoup de mémoire, plus de 512 Mo, et si l'installateur se bloque lors de l'amorçage du noyau, vous pouvez donner un paramètre d'amorçage pour limiter le total de la mémoire que le noyau devra prendre en compte, par exemple mem=512m.

5.3.2. Comprendre les messages du noyau au démarrage

Durant la séquence de démarrage, vous pourriez voir beaucoup de messages du genre can't find something, ou something not present, can't initialize something ou même this driver release depends on something. La plupart de ces messages sont sans conséquence. Vous les voyez parce que le noyau du système d'installation est conçu pour tourner sur des ordinateurs avec un grand nombre de périphériques très différents. Évidemment, aucun ordinateur ne possède tous les périphériques possibles, et le système d'exploitation pourrait se plaindre alors qu'il recherche un périphérique que vous ne possédez pas. Vous pourriez également voir le système s'arrêter pendant un moment. Cela arrive quand il attend la réponse d'un périphérique qui n'est pas présent sur votre système. Si vous trouvez le temps de démarrage du système exagérément long, vous pouvez créer un noyau personnalisé (voyez : Section 8.4).

5.3.3. Rapporteur de bogues

Si vous parvenez à la fin de la phase d'amorçage mais que vous ne parveniez pas à terminer l'installation, le choix « Rapporteur de bogues » du menu peut vous aider. Il copie sur une disquette les journaux contenant les erreurs système et des informations sur la configuration. Toutes ces informations peuvent donner des indications sur ce qui s'est mal passé et sur la manière de le corriger. Si vous envoyez un rapport de bogue, vous pouvez attacher cette information au rapport.

Pendant l'installation, d'autres messages intéressants se trouvent dans le fichier /target/var/log/debian-installer/, et, quand l'ordinateur a démarré le nouveau système installé, ces messages se trouvent dans le fichier /var/log/debian-installer/.

5.3.4. Faire un rapport de bogue

Si vous avez toujours des ennuis, faites un rapport de bogue. Nous vous demandons aussi d'envoyer des rapports sur les installations réussies, car nous cherchons des informations sur toutes les configurations matérielles possibles.

Vous pouvez utiliser le modèle suivant. Envoyez-le comme un rapport de bogue pour le paquet installation-reports, à l'adresse <submit@bugs.debian.org>.

Package: installation-reports

```
Boot method: <Comment avez-vous amorcé l'installateur ? cédérom, disquette ? réseau ?>
Image version: <date et provenance de l'image>
Date: <Date et heure de l'installation>
Machine: <Description de la machine (p. ex. IBM Thinkpad R32)>
Processor:
Memory:
Partitions: <df -Tl ; mais nous préférons la table des partitions>
Résultat de lspci et lspci -n :
Base System Installation Checklist:
[O] = OK, [E] = Error (please elaborate below), [] = didn't try it
                      [ ]
Initial boot worked:
Configure network HW:
                       [ ]
                    [ ]
Config network:
Detect CD:
                       [ ]
Load installer modules: [ ]
Detect hard drives: [ ]
Partition hard drives: [ ]
Create file systems: [ ]
Mount partitions:
                      [ ]
Install base system:
                      [ ]
Install boot loader: [ ]
                       [ ]
Reboot:
Comments/Problems:
```

Dans le rapport de bogue, décrivez le problème en incluant les derniers messages visibles du noyau dans le cas d'un plantage du noyau. Décrivez les étapes que vous avez effectuées pour arriver là.

<Décrivez l'installation, les pensées, commentaires ou idées de propositions

que vous avez eus pendant cette installation.>

Chapitre 6. Comment utiliser l'installateur Debian ?

6.1. Comment marche l'installateur?

L'installateur Debian comprend plusieurs composants qui ont chacun une tâche précise à accomplir. Chaque composant pose à l'utilisateur les questions nécessaires à l'exécution de sa tâche. Chaque question possède une priorité et cette priorité est déclarée au démarrage de l'installateur.

Pour une installation standard, seules les questions essentielles (priorité « high ») sont posées. Ainsi l'installation est grandement automatisée, avec peu d'interventions de l'utilisateur. Les composants sont choisis et exécutés automatiquement selon le matériel et selon le type d'installation demandée. L'installateur utilise des valeurs par défaut pour les questions qui ne sont pas posées à l'utilisateur.

Quand il y a un problème, l'utilisateur voit un message d'erreur et le menu de l'installateur peut apparaître pour permettre le choix d'une autre action. Quand il n'y a pas de problème, l'utilisateur ne voit jamais le menu de l'installateur et il répond simplement aux questions qui lui sont posées par chaque composant. Les messages concernant des erreurs sérieuses ont une priorité « critical » pour que l'utilisateur les reçoive toujours.

On peut modifier les valeurs par défaut utilisées par l'installateur en passant des paramètres d'amorçage au démarrage de l'installateur. Si, par exemple, vous préférez configurer vous-même le réseau — DHCP est utilisé quand c'est possible —, vous pouvez ajouter le paramètre d'amorçage netcfg/disable_dhcp=true. Les paramètres disponibles sont donnés dans la Section 5.2.1.

Certains utilisateurs aiment mieux une interface dotée d'un menu ; ils préfèrent contrôler chaque étape plutôt que de laisser l'installateur agir automatiquement. Pour utiliser l'installateur dans ce mode manuel, il faut ajouter le paramètre de démarrage debconf/priority=medium.

Si, quand ils sont installés, vous devez passer des options aux modules du noyau, vous devrez exécuter l'installateur en mode « expert ». Vous pouvez le faire en utilisant la commande **expert** au démarrage de l'installateur, ou en ajoutant le paramètre d'amorçage **debconf/priority=low**. Le mode expert permet de contrôler complètement l'installateur.

L'affichage de l'installateur se fait en mode caractère, il ne possède pas d'interface graphique. La souris ne fonctionne pas dans cet environnement. Voici les touches qui servent à naviguer dans les différents menus. La flèche **droite** ou la touche **Tab** servent à avancer dans les sélections ou les boutons affichés, et la flèche **gauche** ou la touche **Shift-Tab**, à reculer. Les flèches **montée** et **descente** sélectionnent des élements dans une liste déroulante, et déroulent aussi la liste. De plus, pour les longues listes, taper une lettre déroulera la liste jusqu'à une section qui possèdent des éléments commençant par cette lettre ; vous pouvez utiliser les touches **Pg-Up** et **Pg-Down** pour parcourir la liste selon les sections. La touche **espace** sélectionne les éléments de type checkbox. Activez les choix avec **Enter**.

Les messages d'erreur sont redirigés vers la troisième console. Vous pouvez y accéder en pressant Left Alt-F3 (garder la touche Alt enfoncée pendant que vous appuyez sur la touche de fonction F3). Revenez sur le processus d'installation avec Left Alt-F1.

Ces messages se retrouvent aussi dans /var/log/messages. Après l'installation, ce fichier-journal est copié dans /var/log/installer.log sur votre nouveau système. D'autres messages d'installation se trouvent, pendant l'installation, dans le fichier /var/log/, et, quand la machine a démarré le nouveau système, ces messages se trouvent dans /var/log/debian-installer/.

6.2. Introduction aux composants

Voici une liste des composants de l'installateur, avec une brève description des buts de chacun d'eux. Des précisions sur leur utilisation se trouvent dans Section 6.3.

Le menu principal

Affiche la liste des composants pendant les opérations de l'installateur et lance le composant qui a été choisi. Les questions du menu principal ont la priorité medium, et si la priorité que vous avez choisie est « high » ou « critical » (« high », par défaut), vous ne verrez pas le menu. Quand une erreur se produit, qui demande votre intervention, la priorité de la question peut être abaissée temporairement pour vous permettre de résoudre le problème, et dans ce cas, le menu apparaît.

Depuis le composant en cours, vous pouvez revenir au menu principal en sélectionnant plusieurs fois le bouton « Back ».

languagechooser

Affiche une liste des langues. L'installateur affichera les messages dans la langue choisie, à moins que certains messages ne soient pas traduits. Dans ce cas, les messages sont affichés en anglais.

countrychooser

Permet à l'utilisateur de choisir le pays où il vit dans une liste.

kbd-chooser

Affiche une liste des cartes clavier où choisir le bon modèle.

hw-detect

Détecte automatiquement la plupart des éléments matériels du système, les cartes réseau, les disques, les cartes PCMCIA.

cdrom-detect

Recherche et monte les cédéroms pour l'installation de Debian.

netcfg

Configure la connexion réseau pour la communication sur internet.

iso-scan

Recherche les fichiers ISO, qui se trouvent soit sur un cédérom, soit sur un disque dur.

choose-mirror

Affiche une liste des miroirs de l'archive Debian. L'utilisateur peut choisir la source des paquets qu'il veut installer.

cdrom-checker

vérifie l'intégrité des cédéroms. Ainsi l'utilisateur peut s'assurer que le cédérom d'installation n'est pas corrompu.

lowmem

Lowmem essaye de détecter les systèmes qui ont peu de mémoire et s'arrange pour supprimer les programmes non indispensables de l'installateur, au prix de certaines fonctionnalités.

anna

Anna's Not Nearly APT. C'est un programme qui installe les paquets qui ont été récupérés sur le miroir choisi.

partman

Ce programme permet de partitionner les disques du système, de créer les systèmes de fichiers sur les partitions et de monter ces partitions. Il possède d'autres fonctionnalités intéressantes comme son mode automatique ou la gestion de LVM. C'est le partitionneur principal de Debian.

autopartkit

Ce programme partitionne automatiquement un disque entier suivant des valeurs préalablement données par l'utilisateur.

partitioner

Ce programme permet de partitionner les disques du système. Un partitionneur approprié à l'architecture de votre système est choisi.

partconf

Affiche la liste des partitions et crée les systèmes de fichiers sur les partitions choisies selon les instructions de l'utilisateur.

lvmcfg

Aide l'utilisateur dans sa configuration de LVM (Logical Volume Manager).

mdcfg

Ce programme permet la configuration d'un *RAID* logiciel (Redundant Array of Inexpensive Disks). Ce RAID logiciel est supérieur aux contrôleurs IDE qu'on trouve sur les cartes mère récentes.

base-installer

Ce programme installe l'ensemble des programmes de base qui permettront le fonctionnement de l'ordinateur sous Linux après le redémarrage.

os-prober

Ce programme détecte les systèmes d'exploitation présents sur le système et passe cette information au programme bootloader-installer; celui-ci vous donne la possibilité d'ajouter ces systèmes au menu des programmes d'amorçage. Ainsi vous pourrez choisir, au moment du démarrage, quel système lancer.

bootloader-installer

Ce programme installe un programme d'amorçage sur le disque choisi ; c'est nécessaire pour démarrer Linux sans lecteur de disquette ou sans cédérom. Beaucoup de programmes d'amorçage permettent de choisir le système d'exploitation que l'on veut lancer au démarrage de la machine.

base-config

Ce programme fournit les dialogues qui permettent la configuration des paquets du système de base selon les préférences de l'utilisateur. Cette configuration est faite après le redémarrage de la machine, c'est la « première » du nouveau système Debian.

shell

Ce programme permet d'exécuter un interpréteur de commandes, à partir du menu ou dans la deuxième console.

bugreporter

Ce programme permet d'enregistrer des informations sur une disquette quand quelque chose se passe mal ; ainsi on peut par la suite envoyer des informations précises aux développeurs Debian

6.3. Utilisation des composants

Dans cette section, nous décrirons en détail chaque composant de l'installateur. Ces composants sont groupés en étapes reconnaissables par les utilisateurs. Ils sont présentés selon l'ordre d'apparition dans le processus d'installation. Notez que les modules ne sont pas tous utilisés dans toutes les installations. Leur utilisation dépend du matériel et du type d'installation choisi.

6.3.1. L'installateur Debian et la configuration du matériel

Supposons que l'installateur Debian a démarré et vous propose son premier écran. Les fonctionnalités de l'installateur sont à ce moment très limitées. Il ne connaît pas votre matériel, la langue voulue, ni même ce qu'il doit faire. Ne vous inquiétez pas ! L'installateur est un programme intelligent qui peut explorer votre matériel, trouver ses composants et se transformer en un système d'installation opérationnel. Cependant certaines valeurs comme la langue choisie, la carte clavier ou le miroir sur le réseau ne peuvent être automatiquement déterminées et doivent lui être données.

Il faut noter que l'installateur procède à plusieurs détections de matériel pendant cette étape. La première recherche particulièrement le matériel nécessaire à l'installation des composants de l'installateur (le lecteur de cédérom ou la carte réseau par exemple). Comme tous les pilotes ne sont pas disponibles lors de cette première recherche, d'autres détections de matériel seront nécessaires.

6.3.1.1. Vérification de la mémoire disponible

L'une des premières tâches effectuées par l'installateur est la vérification de la mémoire disponible. Si la mémoire disponible est insuffisante, le processus d'installation sera modifié pour permettre avec un peu de chance l'installation de Debian GNU/Linux sur votre machine.

Lors de l'installation sur un système n'ayant pas suffisamment de mémoire, tous les composants ne seront pas disponibles. L'une des limitations est que vous ne pourrez pas choisir la langue pour l'installation.

6.3.1.2. Choix de la langue

Le choix de la langue dans laquelle vous voulez faire l'installation est la première étape du processus d'installation. Les noms des langues sont affichés en anglais (côté gauche) et dans la langue ellemême (côté droit). Les noms sur la droite sont aussi affichés avec leur propre script. La liste est triée selon les noms anglais.

L'installation se fera dans la langue choisie, à condition que la traduction des dialogues existe. Quand il n'existe pas de traduction pour la langue choisie, l'installateur parlera anglais. La langue choisie sert aussi au choix d'une carte clavier correspondante.

6.3.1.3. Choix du pays

Si vous choisissez dans Section 6.3.1.2 une langue qui est parlée dans plus d'un pays (comme le chinois, l'anglais, le français ou d'autres langues), vous pouvez choisir le pays ici. Si vous choisissez Autre à la fin de la liste, vous aurez une liste de tous les pays regroupés par continent.

Ce choix sera utilisé plus tard pendant l'installation pour configurer votre fuseau horaire et le miroir Debian correspondant à votre zone géographique. Si les choix par défaut proposés par l'installateur ne sont pas appropriés, vous pouvez faire un choix différent. Le choix du pays et de la langue influent sur le paramétrage des locales de votre nouveau système Debian.

6.3.1.4. Choix du clavier

Les claviers sont souvent construits en raison des caractères utilisés dans une langue. Choisissez un clavier dont la carte répond à la langue de votre pays, ou bien, si aucune carte clavier ne correspond à ce que vous voulez, choisissez un clavier approchant. Quand l'installation sera terminée, vous pourrez en choisir un avec la commande **kbdconfig**, lancée en tant que superutilisateur, qui vous présentera un plus grand choix de cartes clavier.

Illuminez l'élément clavier que vous voulez et appuyez sur la touche **Enter**. Servez-vous pour cela des flèches de direction — elles se trouvent au même endroit dans toutes les cartes clavier, et elles sont indépendantes de la configuration du clavier. Un clavier « étendu » est un clavier qui possède une rangée de touches **F1** à **F10**.

6.3.1.5. Rechercher l'image ISO de l'installateur Debian

Quand vous faites une installation selon la méthode *hd-media*, il arrive un moment où vous devez monter l'image ISO de l'installateur Debian pour obtenir les autres fichiers d'installation. C'est le programme **iso-scan** qui exécute cette tâche.

Dans un premier temps, **iso-scan** monte automatiquement tous les périphériques bloc (p. ex. les partitions) qui possèdent un système de fichiers connu et recherche les noms de fichiers qui se terminent par .iso (ou .ISO pour notre exemple). Il faut remarquer que la première recherche se fait dans le répertoire racine et au premier niveau des sous-répertoires (c'est-à-dire que les fichiers /fichier.iso ou /data/fichier.iso seront trouvés mais pas le fichier /data/tmp/fichier.iso). Quand une image a été trouvée, **iso-scan** vérifie que c'est bien une image iso de Debian. Si ce n'est pas le cas, **iso-scan** cherche une autre image.

Quand **iso-scan** ne trouve pas d'image, le programme vous demande si vous voulez faire une recherche plus approfondie. Cette fois-ci, la recherche ne se contentera pas des répertoires de premier niveau, mais elle traversera tout le système de fichiers.

Quand **iso-scan** n'a pas découvert l'image iso de l'installateur, relancez le premier système d'exploitation et vérifiez que le nom de l'image se termine bien par .iso, qu'elle se trouve sur un système de fichier reconnu par l'installateur Debian et qu'elle n'est pas défectueuse (vérifiez la somme de contrôle). Les utilisateurs expérimentés d'Unix peuvent faire ça sans redémarrer, dans la deuxième console.

6.3.1.6. Configuration du réseau

Pour cette étape, si l'installateur détecte plusieurs interfaces réseau, vous devrez indiquer quelle est la principale, c'est-à-dire celle que vous voulez utiliser pour l'installation. Les autres interfaces ne seront

pas configurées à ce moment. Vous pourrez les configurer une fois l'installation terminée. Voyez la page du manuel interfaces(5).

L'installateur essaie d'abord de configurer automatiquement le réseau avec DHCP. Si le test DHCP réussit, tout est fait. Si le test échoue, il peut y avoir plusieurs raisons, un câble mal branché, un serveur DHCP mal configuré. Ou bien votre réseau ne possède pas de serveur DHCP. Lisez les messages d'erreur sur la troisième console pour d'autres explications. Dans tous les cas, on vous demandera si vous voulez réessayer ou si vous voulez configurer vous-même le réseau. Les serveurs DHCP sont parfois très lents et si vous êtes sûr que tout est en place, réessayez.

Si vous configurez vous-même le réseau, on vous demandera l'adresse IP de votre machine, le masque réseau, l'adresse de la passerelle, les adresses des serveurs de noms et le nom de la machine. De plus, si vous possédez une interface pour réseau sans fil, on vous demandera le nom ESSID du réseau et la clé WEP. Pour ces réponses, voyez Section 3.3.

Note: Voici quelques précisions techniques que vous trouverez, ou non, utiles: Le programme suppose que l'adresse IP du réseau est le résultat d'un « ET logique » entre l'adresse de la machine et l'adresse du masque réseau. L'adresse « broadcast » sera le résultat d'un « OU logique » entre l'adresse de la machine et la négation logique du masque réseau. Si vous ne connaissez aucune de ces valeurs, utilisez les valeurs proposées par l'installateur. Vous pourrez les modifier quand le système aura été installé, en modifiant le fichier /etc/network/interfaces. Vous pouvez aussi installer le paquet etherconf qui vous aidera dans la configuration de votre réseau.

6.3.2. Partitionnement et points de montage

Après la dernière détection de matériel, l'installateur est pleinement opérationnel et connaît les besoins de l'utilisateur. Comme l'indique le titre de cette section, la tâche des composants de cette étape est de partitionner les disques, créer les systèmes de fichiers et déclarer les points de montage. Des tâches proches, comme la configuration de périphériques LVM ou RAID, peuvent aussi être menées à bien.

6.3.2.1. Partitionner les disques

Il est temps maintenant de partitionner les disques. Si le partitionnement vous inquiète ou si vous voulez des précisions supplémentaires, voyez l'Annexe B.

Dans un premier temps, vous aurez la possibilité de partitionner un disque entier ou une partie de disque, de façon automatique. C'est le partitionnement « assisté ». Si vous n'aimez pas ce côté automatique, choisissez l'option Modifier la table des partitions dans le menu.

Si vous choisissez le partitionnement assisté, vous pourrez choisir les modèles décrits dans le tableau ci-dessous. Tous ces schémas ont leurs avantages et leurs inconvénients, certains sont discutés dans l'Annexe B. Choisissez le premier si vous n'avez pas d'avis tranché. N'oubliez pas que le partitionnement assisté a besoin de suffisamment d'espace libre pour pouvoir fonctionner. Si vous ne lui donnez pas au moins 1 GO, il échouera.

Schéma de partitionnement	Espace minimum	Partitions créées
Tous les fichiers dans une seule partition	600 Mo	/, swap

Schéma de partitionnement	Espace minimum	Partitions créées
Machine de bureau	500 Mo	/, /home, swap
Système multiutilisateur	1 Go	/,/home,/usr,/var,/tmp,
		swap

Si vous avez choisi le partitionnement automatique pour le système Alpha, une partition non formatée sera installée au début du disque pour réserver de l'espace pour le programme aboot.

Sur l'écran suivant, vous verrez votre table des partitions, avec le type de formatage des partitions et leur point de montage.

La liste des partitions pourrait ressembler à ceci :

```
IDE1 master (hda) - 6.4 Go WDC AC36400L
                16.4 Mo
     #1 primary
                             ext2
                                        /boot
     #2 primary 551.0 Mo
                             swap
                                        swap
     #3 primary
                 5.8 Go
                             ntfs
        pri/log
                  8.2 Mo
                             FREE SPACE
IDE1 slave (hdb) - 80.0 Go ST380021A
     #1 primary 15.9 Mo
                           ext3
     #2 primary 996.0 Mo
                             fat16
     #3 primary 3.9 Go
                             xfs
                                        /home
     #5 logical
                  6.0 Go
                             ext3
     #6 logical
                 1.0 Go
                             ext3
                                        /var
     #7 logical 498.8 Mo
                             ext3
     #8 logical 551.5 Mo
                             swap
                                        swap
     #9 logical
                65.8 Go
                             ext2
```

Cet exemple affiche les partitions de deux disques durs IDE. Le premier possède un espace libre. Chaque ligne donne le numéro de la partition, son type, sa taille, des drapeaux facultatifs, le système de fichiers et le point de montage s'il existe.

Ainsi se termine le partitionnement assisté. Si vous êtes satisfait de la table des partitions créée, vous pouvez sélectionner Terminer le partitionnement et écrire les modifications sur le disque dans le menu pour la créer réellement (voyez la fin de cette section). Si vous n'êtes pas satisfait, vous pouvez choisir Ne pas modifier les partitions, pour relancer le partitionnement assisté ou bien pour modifier les changements proposés, voyez le partitionnement manuel plus bas.

Un écran similaire au précédent sera affiché si vous avez choisi le partitionnement manuel ; mais c'est votre table des partitions qui est montrée et sans les points de montage. La suite de cette section expliquera comment créer une table des partitions et indiquera l'usage de ces partitions.

Si vous avez sélectionné un disque tout neuf, sans partition ni espace libre, on vous proposera de créer une table des partitions ; c'est nécessaire pour créer des partitions. Une nouvelle ligne, intitulée « ESPACE LIBRE » devrait apparaître sous le disque sélectionné.

Si vous avez sélectionné un espace libre, on vous proposera de créer de nouvelles partitions. On vous posera des questions sur la taille de la partition, son type (primaire ou logique), son début et sa fin dans l'espace libre. Puis la nouvelle partition sera présentée. Il y a des options comme le point de montage, les options de montage, le drapeau d'amorçage, ou la manière de l'utiliser. Si vous n'aimez pas les valeurs présélectionnées, n'hésitez pas à les changer. Par exemple, en choisissant l'option Utiliser comme , vous pouvez demander un autre système de fichiers ou demander d'utiliser cette partition comme partition d'échange, comme partition RAID logiciel ou partition LVM, et même demander de ne pas l'utiliser du tout. Une autre possibilité agréable est de pouvoir copier les données d'une

partition existante sur cette partition. Quand vous êtes satisfait de votre nouvelle partition, choisissez Terminer le paramètrage de la partition et vous serez ramené à l'écran principal de **partman**.

Si vous voulez modifier votre partition, sélectionnez-la et vous reviendrez au menu de configuration des partitions. C'est le même écran que pour une création et vous pourrez aussi changer les mêmes options. Ce n'est pas évident au premier regard, mais on peut modifier la taille de la partition en sélectionnant l'élément affichant la taille. Les systèmes de fichiers fat16, fat32, ext2, ext3 et swap sont réputés bien fonctionner. Ce menu permet aussi de supprimer une partition.

N'oubliez pas de créer au moins deux partitions, une partition d'échange, *swap* et une partition pour le système de fichiers de la racine (*root*) qui sera monté en /. Si vous ne montez pas le système de fichiers de la racine, **partman** ne pourra continuer que si vous corrigez le problème.

On peut ajouter des fonctionnalités à **partman** avec des modules de l'installateur. Aussi, quand vous n'avez pas tout ce qu'on vous a promis, vérifiez que vous avez chargé tous les modules requis, par exemple, partman-ext3, partman-xfs, ou partman-lvm.

Quand vous êtes satisfait de vos choix de partitionnement, choisissez l'option Terminer le partitionnement du menu. Un résumé des modifications apportées aux disques sera affiché et on vous demandera une confirmation avant de créer les systèmes de fichiers.

6.3.2.2. Configuration du « Logical Volume Manager » (LVM)

Si vous travaillez sur les ordinateurs comme administrateur système ou si vous êtes un utilisateur « avancé », vous avez sûrement rencontré le cas suivant : une partition qui manque d'espace libre (c'est habituellement la plus importante du système) et une partition grossièrement sous-utilisée, la gestion de cette situation ayant consisté en déplacement de fichiers, création de liens symboliques, etc.

Pour éviter cette situation, on peut utiliser un gestionnaire de volumes logiques, « Logical Volume Manager » (LVM). Dit simplement, avec LVM vous pouvez combiner vos partitions (*volumes physiques* dans le lexique LVM) pour former un disque virtuel (*groupe de volumes*) qui peut être divisé en partitions virtuelles (*volumes logiques*). L'idée est que les volumes logiques s'étendent sur plusieurs disques physiques.

Dès lors, quand vous constatez que votre vieille partition /home de 160 Go a besoin d'espace, vous pouvez simplement ajouter un disque de 300 Go à votre machine, l'intégrer au groupe de volumes existant et redimensionner le volume logique qui comprend la partition /home et voilà, vos utilisateurs ont de nouveau de la place sur la partition de 460 Go! Cet exemple est bien sûr un peu simplifié. Si vous ne l'avez pas encore lu, vous devriez consulter le HOWTO LVM (http://www.tldp.org/HOWTO/LVM-HOWTO.html).

La configuration de LVM dans l'installateur debian est très simple. D'abord, vous devez marquer les partitions à utiliser comme volumes physiques par LVM. Cela se fait avec **partman** dans le menu Partition settings, où vous choisissez Use as:—volume physique pour LVM. Puis, vous lancez le module **lvmcfg** (soit directement dans **partman**, soit dans le menu principal de l'installateur) et vous combinez les volumes physiques dans un groupe de volumes dans le menu Modifier les groupes de volumes. Enfin vous devez créer les volumes logiques au dessus des groupes de volumes dans le menu Modifier les volumes logiques.

Quand vous aurez quitté **lvmcfg**, vous verrez dans **partman** tous les volumes logiques créés comme si c'étaient de simples partitions, et vous devez les traiter ainsi.

6.3.2.3. Configuration d'un périphérique à plusieurs disques (RAID logiciel)

Si vous avez plusieurs disques durs ¹ sur votre machine, vous pouvez utiliser **mdcfg** pour obtenir de vos disques de meilleures performances et une meilleure fiabilité de vos données. Le résultat est un périphérique à plusieurs disques, *Multidisk Device*, ou *RAID logiciel*.

Un périphérique à plusieurs disques n'est qu'un ensemble de partitions situées sur différents disques mais réunies pour former un périphérique *logique*. Ce périphérique peut alors être utilisé comme une simple partition, c'est-à-dire une partition qu'on peut monter et formater avec **partman**.

Ce que vous gagnez dépend du type de périphérique créé. Voici ceux qui sont reconnus :

RAID0

Ce type vise principalement la performance. RAID0 divise toutes les données entrantes en *bandes* et les distribue également sur tous les disques. Cela peut augmenter la vitesse des opérations d'écriture et de lecture, mais si l'un des disques a un problème, vous perdez *tout* : une partie des informations est encore sur les disques sains, mais l'autre *était* sur le disque défectueux.

L'usage standard de RAID0 est une partition pour du travail vidéo.

RAID1

Ce type est adapté là où la fiabilité est le premier souci. Il consiste en plusieurs partitions de même taille (deux, habituellement) qui contiennent exactement les mêmes données. Cela signifie essentiellement trois choses. Premièrement, si l'un des disques a un problème, les données sont encore sur les autres disques. Deuxièmement, vous pouvez utiliser une partie seulement de la capacité disponible, précisément, la taille de la partition la plus petite du RAID. Troisièmement, la charge de lecture des fichiers est répartie entre tous les disques, ce qui peut améliorer les performances d'un serveur, notamment les serveurs de fichiers où les lectures sont plus nombreuses que les écritures de fichiers.

Vous pouvez aussi avoir un disque de rechange qui prendra la place du disque défectueux en cas de problème.

RAID5

Ce type est un bon compromis entre vitesse, fiabilité et redondance des données. RAID5, comme RAID0, divise toutes les données entrantes en bandes et les distribue également sur tous les disques. Mais contrairement à RAID0, RAID5 calcule aussi l'information de *parité*, qui est écrite sur le disque restant. Le disque de parité n'est pas fixe (ce serait RAID4), il change périodiquement et ainsi l'information de parité est distribuée également sur tous les disques. Quand l'un des disques s'arrête, la partie manquante des données peut être calculée avec les données restantes et la parité. RAID5 doit comporter au moins trois partitions actives. Vous pouvez aussi avoir un disque de rechange qui prendra la place du disque défectueux en cas de problème.

Comme vous le voyez, RAID5 est aussi fiable que RAID1 tout en évitant de la redondance. D'un autre côté, il sera un tout petit peu moins rapide dans les opérations d'écriture que RAID0, à cause du calcul de l'information de parité.

Pour résumer :

^{1.} Pour être honnête, on peut construire un périphérique à plusieurs disques même avec les partitions d'un seul disque, mais ça n'apporte pas grand chose.

Туре	Nombre minimum de disques	Disque de rechange	Supporte l'échec d'un disque ?	Espace disponible
RAID0	2	non	non	Taille de la plus petite partition multipliée par le nombre des périphériques dans le RAID
RAID1	2	facultatif	oui	Taille de la plus petite partition dans le RAID
RAID5	3	facultatif	oui	Taille de la plus petite partition multipliée par le nombre des périphériques dans le RAID moins un.

Si vous voulez tout savoir sur le RAID logiciel, lisez le HOWTO sur le RAID logiciel (http://www.tldp.org/HOWTO/Software-RAID-HOWTO.html).

Pour créer un périphérique à plusieurs disques, vous devez préparer les partitions nécessaires. Vous pouvez le faire avec **partman**, dans le menu Définitions des partitions où vous choisirez Utiliser comme :—volume physique pour RAID

Avertissement

L'installateur gère le RAID logiciel depuis peu. Vous pourrez rencontrer des problèmes, pour certains niveaux RAID et en combinaison avec les programmes d'amorçage, si vous essayez d'utiliser un périphérique de ce type pour la partition racine, /. Les experts pourront sans doute contourner ces problèmes en exécutant certaines étapes de configuration ou d'installation dans un shell.

Ensuite, vous choisissez Configurer le RAID logiciel dans le menu principal de **partman**. Dans le premier écran de **mdcfg**, sélectionnez Créer un périphérique à plusieurs disques. Une liste des types acceptés pour ces périphériques est affichée et vous pouvez en choisir un, par exemple RAID1. La suite dépend du type que vous avez choisi.

- Le type RAID0 est simple. Une liste des partitions RAID disponibles est présentée et tout ce que vous avez à faire est de choisir les partitions qui composeront le périphérique.
- Le type RAID1 est un peu plus compliqué. On vous demandera d'abord le nombre de périphériques actifs et le nombre de périphériques de rechange qui composeront le périphérique. Ensuite vous devrez choisir dans la liste des partitions RAID celles qui seront actives et celles qui resteront en réserve. Le nombre de ces partitions devra être égal à celui donné l'instant d'avant. Mais, si vous n'indiquez pas le même chiffre, l'installateur ne vous laissera pas continuer et vous demandera une correction.
- RAID5 se configure comme RAID1, mais vous devez utiliser au moins trois partitions actives.

Il est parfaitement possible d'avoir plusieurs types de périphériques en même temps. Par exemple, avec trois disques durs de 200 Go, chacun contenant deux partitions de 100 Go, vous pouvez créer un périphérique de type RAID0 avec les premières partitions des trois disques, soit une partition rapide de 300 Go pour le travail vidéo; et vous pouvez combiner les trois partitions restantes (deux actives, une de rechange) dans un périphérique RAID1, soit une partition très fiable de 100 Go pour /home.

Quand vous avez défini vos périphériques, vous pouvez choisir Terminer mdcfg pour retourner au menu de partman et créer les systèmes de fichiers et les options habituelles comme les points de montage pour ces nouveaux périphériques.

6.3.3. L'installation du système de base

Quoique cette étape de l'installation soit la moins problématique, elle consomme la plus grande partie du temps d'une installation; elle télécharge, vérifie et dépaquette tous les paquets du système de base. Si votre ordinateur est lent ou si vous utilisez une connexion réseau, cela peut prendre du temps.

6.3.3.1. Installation du système de base

Pendant l'installation du système de base, les messages concernant le dépaquetage et la configuration des paquets sont redirigés sur tty3. On peut accéder à ce terminal en faisant Left Alt-F3; et l'on revient au processus principal avec Left Alt-F1.

Les messages concernant le dépaquetage et la configuration des paquets produits par le processus d'installation sont enregistrés dans le fichier /var/log/messages quand l'installation se fait à travers une console série.

Le noyau Linux fait partie de l'installation. Avec la priorité par défaut, l'installateur choisira le noyau qui correspond le mieux à votre matériel. Avec les prioritée les plus basses, vous pourrez en choisir un dans une liste.

6.3.4. Rendre le système amorçable

Si vous installez Debian sur un poste de travail sans disque, amorcer le disque n'est pas une option valable et cette étape sera évitée.

Il faut remarquer que la possibilité d'amorcer différents systèmes sur une seule machine relève encore de la magie noire. Ce document ne se veut pas une information sur les programmes d'amorçage qui sont différents d'une architecture à l'autre. Voyez la documentation propre à votre programme d'amorçage.

6.3.4.1. Détecter les autres systèmes d'exploitation

Avant l'installation du programme d'amorçage, l'installateur recherche les systèmes d'exploitation installés sur la machine. S'il reconnaît un système d'exploitation, vous en serez informé et l'installateur configurera le programme d'amorçage pour pouvoir démarrer aussi bien ce système que Debian.

Notez que la possibilité d'amorcer différents systèmes sur une même machine relève encore de la magie. Le support de détection et de configuration automatique des programmes d'amorçage est différent pour chaque architecture et même pour chaque sous-architecture. Si l'automatisation ne fonctionne

pas correctement, reportez-vous à la documentation propre à votre programme d'amorçage pour plus d'information.

Note: Il se peut que l'installateur ne détecte pas les autres systèmes si les partitions sur lesquelles ils résident sont montées au moment de la détection. Cela peut arriver si vous avez choisi dans **partman** un point de montage (p. ex. /win) pour une partition qui contient un système d'exploitation; ou bien si vous avez monté des partitions dans une console.

6.3.4.2. Installer aboot sur un disque dur.

Si vous avez démarré depuis SRM, et si vous choisissez cette option, l'installateur écrira le programme **aboot** sur le premier secteur du disque où vous avez installé Debian. Faites *très* attention, il *n'est pas* possible de démarrer plusieurs systèmes d'exploitation comme GNU/Linux, Free/Open/NetBSD, OSF/1 (Digital Unix, Tru64 Unix), ou OpenVMS depuis le même disque. Si un autre système d'exploitation est installé sur le disque où est Debian, vous devrez démarrer Debian depuis une disquette.

6.3.4.3. Continuer sans programme d'amorçage

Cette option peut être employée pour terminer l'installation même lorsqu'aucun programme d'amorçage n'est installé soit parce qu'il n'en existe aucun pour cette architecture soit parce qu'on veut utiliser un autre programme.

Si vous voulez configurer vous-même un programme d'amorçage, vous devez chercher le nom du noyau installé dans /target/boot. Vous devez aussi vérifier la présence dans ce répertoire d'un *initrd*. Si ce fichier existe, vous devrez indiquer au programme d'amorçage de l'utiliser. Vous devrez connaître aussi le disque et la partition sur laquelle est monté le système de fichiers racine, /; si vous avez mis /boot sur une partition distincte, vous devez connaître son système de fichiers .

6.3.5. Comment terminer la première étape ?

Voici les dernières choses à faire avant de relancer la machine pour amorcer votre système Debian. Cela consiste essentiellement à faire un nettoyage après le travail de l'installateur.

6.3.5.1. Terminer l'installation et réamorcer

Voici la dernière étape du processus initial d'installation. On vous demandera de retirer le support d'installation (cédérom, disquette, etc.) utilisé pour démarrer l'installateur. Après les derniers préparatifs, l'installateur amorce le nouveau système Debian.

6.3.6. Divers

Les composants suivants ne participent pas au processus d'installation, ils attendent en silence que l'utilisateur ait besoin d'aide.

6.3.6.1. Sauvegarde des journaux de l'installation

Si l'installation a réussi, les fichiers journaux créés pendant l'installation seront automatiquement sauvegardés dans le répertoire /var/log/debian-installer/ sur votre nouveau système Debian.

Choisissez Sauvegarder les journaux de débogage depuis le menu principal pour sauvegarder les fichiers journaux sur une disquette. Cela peut être utile, si vous rencontrez des problèmes durant l'installation et que vous souhaitez étudier les journaux sur un autre système ou les envoyer dans d'un rapport de bogue sur l'installation.

6.3.6.2. Utilisation du shell et visualisation des journaux

Dans le menu, il y a une entrée Exécuter un shell. Si le menu n'est pas disponible au moment où vous avez besoin d'utiliser un shell, appuyez sur les touches Left Alt-F2 (sur un clavier Mac, Option-F2) pour obtenir la seconde *console virtuelle*. C'est-à-dire qu'il faut appuyer simultanément sur la touche Alt, à gauche de la barre espace, et sur la touche de fonction F2. Ce qui ouvrira une nouvelle fenêtre où s'exécutera un clone du Bourne Shell, ash.

Vous avez maintenant amorcé votre système depuis un disque virtuel en mémoire, et vous avez seulement accès à un ensemble limité d'utilitaires Unix. Vous pouvez voir les programmes disponibles avec la commande ls /bin /sbin /usr/bin /usr/sbin et en utilisant la commande help. L'éditeur de texte disponible est nano. Ce shell a quelques fonctionnalités intéressantes comme la complétion automatique et le rappel des commandes.

Utilisez toujours les commandes du menu pour les tâches qu'elles peuvent accomplir. Le shell est seulement là pour vous dépanner en cas de problème. En particulier, vous devez toujours utiliser le menu, et pas le shell, pour activer votre partition d'échange, parce que l'installateur ne peut pas détecter ce que vous avez fait depuis le shell. Appuyez sur **Left Alt-F1** pour revenir au menu, ou tapez exit si vous avez utilisé un objet du menu pour ouvrir le shell.

6.3.6.3. Installation par le réseau

L'un des composants les plus intéressants est *network-console*. Il permet de faire une installation grâce au réseau avec SSH. L'utilisation du réseau implique que vous devez effectuer les premières étapes de l'installation à partir de la console, jusqu'à la configuration du réseau. Mais vous pouvez automatiser le processus, voyez Section 4.4.

Ce composant n'est pas chargé automatiquement et il vous faut le demander explicitement. Si vous faites une installation à partir d'un cédérom, vous devez amorcer avec la priorité medium ou appeler le menu principal de l'installateur et choisir Chargement des composants de l'installateur à partir d'un cédérom puis, choisir sur la liste des composants supplémentaires network-console: Continuer l'installation depuis une machine distante avec SSH. Si le chargement a réussi, une nouvelle entrée appelée Continuer l'installation depuis une machine distante avec SSH apparaît.

Quand vous avez sélectionné cette nouvelle entrée, on vous demande le mot de passe qui servira à se connecter au système d'installation, ainsi que sa confirmation. Et c'est tout. Vous devez voir maintenant un écran qui vous indique comment accéder à la machine distante en tant qu'utilisateur *installer* avec le mot de passe que vous venez de donner. Un point important à noter dans cet écran est l'empreinte du système. Vous devez transférer de façon sécurisée cette empreinte à la « personne qui continuera l'installation à distance ».

Si vous décidiez de continuer l'installation localement, vous pourrez toujours appuyer sur la touche **Enter**, qui vous ramènera au menu principal où vous pourrez choisir un autre composant.

Passons maintenant à l'autre bout du câble. Vous devez tout d'abord configurer votre terminal avec le codage UTF-8 car c'est le codage utilisé par le système d'installation. Si vous n'utilisez pas ce codage, l'installation à distance sera possible mais vous risquez de rencontrer d'étranges artefacts comme des bordures de dialogues effacées ou des caractères illisibles. L'établissement de la connexion avec le système d'installation est très simple :

\$ ssh -l installer install_host

Où *install_host* est soit le nom soit l'adresse IP de la machine où sera installé le système. Avant de vous connecter réellement, l'empreinte du système distant sera affichée et vous devrez confirmer qu'elle est correcte.

Note: Si vous installez le système sur plusieurs machines, l'une à la suite de l'autre, et qu'elles possèdent le même nom ou la même adresse IP, **ssh** refusera toute connexion. La raison est qu'il aura différentes empreintes, ce qui est un signe d'une attaque par mystification (« spoofing attack »). Si vous êtes certain que ce n'est pas le cas, vous devez supprimer la ligne adéquate dans le fichier ~/.ssh/known_hosts et recommencer.

Après la connexion, un premier écran apparaît et vous avez deux possibilités appelées Lancer le menu et Lancer un shell. La première vous place dans le menu principal de l'installateur, où vous pouvez poursuivre l'installation comme habituellement. La seconde lance un interpréteur de commandes et vous pouvez examiner ou corriger si nécessaire le système distant. Vous ne pouvez lancer qu'une seule session ssh pour le menu d'installation, mais vous pouvez lancer plusieurs interpréteurs.

Avertissement

Une fois l'installation à distance commencée, vous ne devez pas revenir à la session d'installation en cours sur la console locale. Si vous le faites, vous risquez de corrompre la base de données où est enregistrée la configuration du nouveau système. Il en résulterait l'échec de l'installation ou des problèmes dans le système installé.

Si vous ouvrez la session SSH dans un terminal X, vous ne devez pas redimensionner la fenêtre car cela fermerait la connexion.

6.3.6.4. Executer base-config depuis l'installateur

Il est possible de configurer le système de base pendant la première partie de l'installation (avant de redémarrer à partir du disque dur), en exécutant **base-config** dans un environnement *chroot*. Cela sert principalement à tester l'installateur. Normalement, il faut éviter de le faire.

Chapitre 7. Démarrer votre nouveau système Debian

7.1. Le moment de vérité

Voici ce que les ingénieurs en électronique appellent le « test de la fumée » : démarrer un système pour la première fois.

Si vous démarrez directement sur Debian, et que le système ne démarre pas, utilisez le support d'installation d'origine, ou insérez la disquette de secours si vous l'avez créée, puis relancez votre système. Vous devrez sans doute ajouter des paramètres de démarrage comme **root=root**, où *root* est votre partition racine, par exemple : /dev/sdal.

7.2. Paramétrage post-démarrage de Debian (Base)

Après le démarrage, on vous demandera de terminer la configuration de votre système de base, et ensuite de sélectionner les paquets supplémentaires que vous souhaitez installer. L'application qui vous guidera au cours de cette étape s'appelle base-config. Sa conception est proche de celle de l'installateur debian, utilisé dans la première étape. Base-config comprend plusieurs éléments spécialisés, chaque élément accomplissant une seule tâche de configuration ; elle contient un « menu caché en arrière-plan » et utilise le même système de navigation que l'installateur.

Si vous souhaitez relancer l'application base-config une fois l'installation terminée, exécutez base-config en tant que superutilisateur.

7.2.1. Configuration de votre fuseau horaire

Après un écran de bienvenue, il vous sera demandé de configurer votre fuseau horaire. Indiquez d'abord si votre système est réglé sur l'heure locale ou sur le " Greenwich Mean Time " (GMT ou UTC). L'heure affichée dans la boîte de dialogue peut vous aider dans votre choix.

Selon le lieu que vous avez sélectionné au début du processus d'installation, il vous sera ensuite montré soit un seul fuseau horaire, soit une liste de fuseaux horaires appropriés à cette localisation. Si un seul fuseau horaire est montré, choisissez OUI ou NON pour sélectionner à partir d'une liste complète de fuseaux horaires. Si une liste est montrée, sélectionnez-y votre fuseau horaire, ou choisissez Autre pour la liste complète.

7.2.2. Utilisateurs et mots de passe

7.2.2.1. Mot de passe pour « Root »

Le compte *root* est aussi appelé le *superutilisateur*; c'est un utilisateur qui outrepasse toutes les protections de sécurité de votre système. Le compte root ne devrait être utilisé que pour faire de l'administration système, et le moins longtemps possible.

Tout mot de passe devrait faire au moins 6 caractères, et devrait contenir tant des minuscules que des majuscules ainsi que des caractères de ponctuation. Soyez particulièrement soigneux lors du choix

de votre mot de passe root en raison des privilèges qui sont associés à ce compte. Evitez les mots du dictionnaire ou toutes les informations personnelles qui pourraient être devinées.

Si jamais quelqu'un vous dit qu'il a besoin de votre mot de passe root, soyez extrêmement vigilant. Vous ne devriez normalement jamais avoir besoin de le donner, à moins que vous n'administriez une machine avec plus d'un administrateur système.

7.2.2.2. Création d'un utilisateur ordinaire

Le système va vous demander à ce stade si vous désirez créer un compte utilisateur ordinaire. Ce compte devrait être votre compte personnel principal. Vous ne devriez *pas* utiliser le compte root pour un usage quotidien ou comme votre compte personnel.

Pourquoi ? Et bien, une raison d'éviter l'utilisation des privilèges de root est qu'il est très aisé de faire des dommages irréparables en tant que root. Une autre raison est que vous pourriez lancer, sans le savoir, un programme de type *Cheval de Troie* — qui utilise avantageusement vos pouvoirs de superutilisateur pour compromettre, à votre insu, la sécurité de votre système. Tout bon livre sur l'administration d'un système Unix couvre ce sujet en détails — envisagez la lecture d'un tel livre si tout cela est nouveau pour vous.

On vous demandera d'abord le nom et le prénom de l'utilisateur. Puis vous choisirez un mot pour nommer le compte de l'utilisateur. En général, c'est votre prénom ou quelque chose d'approchant. Vous indiquerez enfin le mot de passe pour ce compte.

Si vous désirez créer un nouveau compte après l'installation, utilisez la commande adduser.

7.2.3. Paramétrage de PPP

Si votre ordinateur n'a pas été connecté à un réseau pendant la première phase de l'installation, on vous demandera si vous souhaitez installer le reste du système avec PPP. Le protocole PPP sert à établir des connexions internet avec modem. Si vous configurez la connexion maintenant, le système d'installation pourra télécharger d'autres paquets ou des mises à jour de paquet. Si vous n'avez pas de modem ou si vous préférez le configurer par la suite, vous pouvez sauter cette étape.

Pour configurer la connexion, vous aurez besoin de connaître certaines informations données par votre fournisseur d'accès à internet : numéro d'appel, nom d'utilisateur, mot de passe, serveurs DNS (facultatif). Certains FAI fournissent des aides pour les distributions Linux. Vous pouvez utiliser cette information même si elle ne vise pas expressément Debian. La plupart des paramètres de configuration sont semblables dans toutes les distributions Linux.

Si vous choisissez de configurer PPP, un programme nommé **pppconfig** sera lancé. Ce programme vous aidera à configurer votre connexion PPP. Assurez-vous, quand on vous demandera le nom de votre connexion, de l'appeler **provider**.

Le programme **pppconfig** vous guidera et facilitera la configuration de PPP. Néanmoins, si cela ne marche pas, regardez ci-dessous pour des instructions détaillées.

Pour configurer PPP, vous devez connaître les bases de l'affichage et de l'édition des fichiers sous GNU/Linux. Pour afficher les fichiers, vous pouvez utiliser le programme more et le programme zmore pour les fichiers compressés dont l'extension est .gz. Par exemple, pour afficher le fichier README.debian.gz, saisissez zmore README.debian.gz. Le système de base est fourni avec un éditeur nommé nano, très simple d'utilisation mais qui ne possède pas beaucoup de fonctions. Vous souhaiterez probablement installer des éditeurs et des afficheurs plus complets, comme jed, nvi, less ou emacs.

Éditez le fichier /etc/ppp/peers/provider et remplacez /dev/modem par /dev/ttys# où # correspond au numéro de votre port série. Sous Linux, les ports série sont numérotés à partir de 0 ; votre premier port série est /dev/ttys0. L'étape suivante consiste à éditer le fichier /etc/chatscripts/provider pour y ajouter le numéro de téléphone de votre fournisseur d'accès, votre identifiant de connexion et votre mot de passe. S'il vous plaît, n'effacez pas le « \q » qui précède le mot de passe. Il évite que le mot de passe n'apparaisse dans les journaux de connexion.

De nombreux fournisseurs d'accès utilisent PAP ou CHAP pour la séquence de connexion, à la place d'une authentification en mode texte. D'autres utilisent les deux. Si votre fournisseur requiert PAP ou CHAP, vous devrez suivre une procédure différente. Commentez tout ce qui se trouve après la chaîne de numérotation (celle qui débute par « ATDT ») dans le fichier /etc/chatscripts/provider, modifiez le fichier /etc/ppp/peers/provider tel que décrit plus haut, et ajoutez user nom où nom correspond à l'identifiant que vous utilisez pour vous connecter à votre fournisseur d'accès. Éditez ensuite /etc/ppp/pap-secrets ou /etc/ppp/chap-secrets et insérez votre mot de passe.

Vous aurez aussi besoin de modifier le fichier /etc/resolv.conf pour y ajouter les adresses IP des serveurs de noms (DNS) de votre fournisseur d'accès. Les lignes de /etc/resolv.conf sont dans le format suivant : nameserver xxx.xxx.xxx où un x est un chiffre de l'adresse IP. Vous pouvez éventuellement ajouter l'option usepeerdns au fichier /etc/ppp/peers/provider, ce qui permettra de choisir automatiquement les serveurs DNS appropriés et d'utiliser les réglages normalement fournis par la machine distante.

À moins que votre fournisseur d'accès n'utilise une séquence de connexion différente de la majorité des autres FAI, l'affaire est réglée! Lancez la connexion PPP en saisissant **pon** en tant que root et suivez l'exécution avec la commande **plog**. Pour déconnecter, utilisez **poff**, aussi en tant que root.

Lisez le fichier /usr/share/doc/ppp/README.Debian.gz pour de plus amples informations sur l'utilisation de PPP sous Debian.

Pour les connexions SLIP statiques, vous devez ajouter la commande **slattach** (depuis le paquet net-tools) dans le fichier /etc/init.d/network. Les connexions SLIP dynamiques nécessitent l'utilisation du paquet gnudip.

7.2.3.1. PPP sur Ethernet (PPPOE)

PPPOE est un protocole lié à PPP qui permet d'établir des connexions. Le système de base n'offre aucune aide pour configurer ces connexions. Mais les programmes nécessaires sont installés ; vous pouvez configurer manuellement PPPOE en passant sur la console n° 2 et en exécutant **pppoeconf**.

7.2.4. La configuration d'APT

Le principal outil utilisé pour installer des paquets sur les systèmes Debian est un programme appelé **apt-get** qui se trouve dans le paquet apt ¹. D'autres paquets, comme **aptitude**, **synaptic** ou l'ancien **dselect** dépendent d'**apt** et l'utilisent. Ces programmes de gestion des paquets, avec une belle interface utilisateur, offrent des fonctions supplémentaires comme la recherche de paquets ou la vérification des statuts.

APT doit être configuré, pour qu'il sache où récupérer les paquets. L'application qui vous aidera dans cette tâche s'appelle **apt-setup**.

^{1.} Notez que le programme effectivement utilisé pour installer des paquets est nommé **dpkg**. Toutefois, ce paquet est un outil de bas niveau qu'**apt-get** appelle lorsqu'il en a besoin. Ce dernier est un outil de plus haut niveau car il sait aussi bien installer les paquets nécessaires à l'installation du paquet que vous essayez d'installer, que récupérer le paquet à partir d'un cédérom, du réseau, etc.

L'étape suivante dans votre processus de configuration est d'indiquer à APT où trouver les autres paquets Debian. Notez que vous pouvez relancer cet outil à tout moment après l'installation en exécutant **apt-setup** ou en modifiant vous-même /etc/apt/sources.list.

Si un cédérom officiel se trouve dans le lecteur, ce cédérom sera automatiquement configuré comme une source APT. Vous le remarquerez en voyant que le cédérom est lu.

Pour les utilisateurs sans cédérom officiel, d'autres possibilités sont proposées pour accéder aux paquets Debian : FTP, HTTP, cédérom ou système de fichiers local.

Il est parfaitement acceptable d'avoir plusieurs sources APT, y compris pour une même archive Debian. **apt-get** choisira automatiquement le paquet ayant le numéro de version le plus élevé parmi les sources disponibles. Si vous avez par exemple une source HTTP et un cédérom, **apt-get** utilisera automatiquement le cédérom local, sauf si la source HTTP est une version plus récente. Néanmoins, il n'est pas judicieux d'ajouter des sources inutiles, dans la mesure où cela aura tendance à ralentir la recherche de nouvelles versions sur le réseau.

7.2.4.1. Configurer les sources de paquets sur le réseau

Si vous prévoyez d'installer le reste de votre système via le réseau, l'option la plus commune est de sélectionner la source **http**. La source **ftp** est aussi acceptable, mais a tendance à être légèrement plus lente dans l'établissement des connexions.

L'étape suivante durant la configuration des sources des paquets du réseau est d'indiquer à **apt-setup** votre pays de résidence. Cela configure le miroir réseau Debian officiel que vous allez utiliser. Selon le pays que vous choisissez, une liste des machines possibles vous sera proposée. Il est bon de choisir la première de la liste, mais toutes devraient fonctionner. Cette machine est ensuite testée ; si vous rencontrez des problèmes, choisissez une autre machine. Il faut noter que la liste des miroirs a été créée au moment de la parution de cette version de Debian ; ainsi certains miroirs peuvent avoir disparu entre cette date et le moment où vous faites votre installation.

Après avoir choisi un miroir, il vous sera demandé si vous voulez configurer un serveur mandataire (« proxy »). Un serveur mandataire est un serveur qui envoie les requêtes HTTP ou FTP sur internet ; on l'utilise pour réguler et optimiser l'accès à internet dans les réseaux d'entreprise. Dans certains réseaux, seul le serveur accède à internet ; dans ce cas vous devez donner le nom de ce serveur et peut-être aussi un nom d'utilisateur et le mot de passe. La plupart des utilisateurs n'en ont pas besoin. Certains FAI offrent des serveurs mandataires à leurs abonnés.

Après la sélection du miroir, votre nouvelle source de paquets va être testée. Si tout va bien, on vous demandera si vous souhaitez ajouter une autre source. Si vous avez un problème avec la source des paquets, utilisez un autre miroir (à choisir dans la liste pour votre pays ou dans la liste générale) ou bien changez la source des paquets.

7.2.5. Installation des paquets

Il vous sera ensuite proposé un certain nombre de configurations logicielles préparées par Debian. Mais vous pourrez toujours choisir d'installer ce que vous voulez installer sur votre nouvelle machine, paquet par paquet. C'est la raison d'être du programme **aptitude** décrit plus bas. Toutefois, avec près de 14750 paquets disponibles, cela peut être long!

Vous pouvez d'abord choisir des *tâches*, et ensuite ajouter des paquets individuellement. Ces tâches représentent approximativement les différents travaux qu'on peut faire avec son ordinateur, par exemple

de la « bureautique », du « service web » ou encore du « service d'impression » ². L'espace nécessaire pour chaque tâche est indiqué dans Section C.3.

Une fois les tâches sélectionnées, choisissez Ok. Aptitude installera les paquets demandés.

Note: Même si vous n'avez sélectionné aucune tâche, tous les paquets dont la priorité est de type standard, important ou nécessaire seront installés. Cela revient à exécuter taskel -ris sur la ligne de commande ; environ 37 Mo d'archives seront téléchargés. Le nombre de paquets à installer et la taille en Mo de ces paquets seront affichées.

Si vous choisissez d'installer des paquets sur une base individuelle, sélectionnez « Sélection manuelle des paquets » dans **tasksel**. Si vous choisissez une ou plusieurs tâches, aptitude sera appelé avec l'option **--visual-preview**. Vous pourrez ainsi revoir ³ les paquets à installer. Si vous ne sélectionnez pas de tâche, l'écran habituel d'**aptitude** sera affiché. Une fois vos choix faits, pressez la touche « g » pour commencer le téléchargement et l'installation des paquets.

Note : Si vous choisissez « Sélection manuelle des paquets » sans choisir de tâche, aucun paquet ne sera installé. Vous pouvez ainsi installer un système minimal. Cependant il vous incombera d'installer les paquets nécessaires à votre système qui ne font pas partie du système de base.

Sur les 14750 paquets disponibles dans les archives Debian, seule une petite minorité est comprise dans les tâches offertes par l'installateur des tâches. Afin d'obtenir plus d'information sur les paquets, utilisez soit apt-cache search chaîne de recherche pour une chaîne de caractères donnée (voir la page de manuel apt-cache(8)), soit exécutez aptitude comme décrit plus bas.

7.2.5.1. Sélection moderne des paquets avec aptitude

Aptitude est un programme moderne de gestion de paquets. Il permet de sélectionner des paquets individuels, des ensembles de paquets suivant des critères donnés (pour utilisateurs avancés) ou encore des tâches complètes.

Les actions les plus basiques sont :

Touche	Action
Haut, Bas	Déplacer la sélection vers le haut ou vers le bas.
Enter	Ouvrir/fermer/activer un élément.
+	Marquer le paquet pour l'installation.
-	Marquer le paquet pour la suppression.
d	Montrer les dépendances d'un paquet.
g	Télécharger/installer/supprimer les paquets.

^{2.} Il faut savoir que pour présenter cette liste, **base-config** appelle simplement le programme **tasksel**. Pour une sélection manuelle des paquets, c'est **aptitude** qui est exécuté. Chacun de ces programmes peut être utilisé à tout moment une fois l'installation terminée. Une fois que l'installation est finie, si vous voulez un paquet particulier, exécutez simplement **aptitude install** paquet, où paquet est le nom du paquet voulu.

^{3.} Vous pouvez aussi modifier les sélections par défaut. Si vous voulez choisir un paquet supplémentaire, utilisez Voir—Voir les nouveaux paquets.

Touche	Action
q	Quitter la vue actuelle.
F10	Activer le menu.

Pour plus de commandes, veuillez vous référer à l'aide en ligne avec la touche ?.

7.2.6. Interrogations lors de l'installation des logiciels

Chaque paquet que vous avez sélectionné avec **tasksel**, **aptitude** ou **dselect** est tour à tour téléchargé, dépaqueté et installé par les programmes **apt-get** et **dpkg**. Si un programme particulier requiert plus d'informations de la part de l'utilisateur, il le demandera lors de ce processus. Vous pourriez également vouloir garder un oeil sur la sortie du processus d'installation, de manière à voir d'éventuelles erreurs (mais l'on vous demandera de constater les erreurs empêchant l'installation d'un paquet).

7.2.7. Configuration de l'agent de transport du courrier « MTA »

Le courrier électronique tient aujourd'hui une grande place dans la vie des gens ; ce n'est donc pas surprenant que Debian permette la configuration du système de courrier pendant le processus d'installation. L'agent de transport du courrier installé par défaut est **exim4**, un programme relativement petit, souple et facile à apprendre.

Vous pourriez demander si l'installer sur un ordinateur non connecté est vraiment nécessaire. La réponse courte est : oui. Une explication plus longue : certains utilitaires du système comme **cron**, **quota**, **aide**... peuvent vous envoyer des messages importants sous forme de courriel.

Sur le premier écran, les scénarios les plus courants concernant les systèmes de courrier vous seront présentés. Choisissez celui qui s'accorde le mieux avec vos besoins.

site internet

Votre système est connecté à un réseau et le courrier est expédié et reçu directement avec SMTP. Dans les écrans suivants, on vous posera quelques questions élémentaires comme le nom de votre machine pour le courrier, les domaines dont vous acceptez ou relayez les courriels.

courrier envoyé par un « smarthost »(machine relais)

Dans ce scénario, le courrier sortant est envoyé à une autre machine, appelé le « smarthost » qui fait le travail pour vous. Cette machine relais garde les courriels qui vous sont adressés et vous permet de ne pas être constamment connecté. Vous devez donc récupérer vos courriels sur cette machine avec des programmes comme fetchmail. C'est l'option adaptée à un système connecté par le réseau téléphonique.

Distribution locale seulement

Le système n'est pas sur un réseau. Le courrier est uniquement envoyé et reçu par des utilisateurs locaux. Même si vous n'avez pas l'intention d'envoyer des messages, cette option est hautement conseillée car certains utilitaires du système peuvent vous envoyer divers messages d'alerte, p. ex. le bien aimé « Disk quota exceeded ». Cette option convient aussi aux nouveaux utilisateurs, elle ne posera pas de question.

Pas de configuration pour le moment

Choisissez cette option si vous êtes absolument certain de savoir ce que vous faites. Le système de courrier ne sera pas configuré. Tant qu'il ne le sera pas, vous ne pourrez ni envoyer ni recevoir des courriels. Les messages importants venant des utilitaires du système ne vous parviendront pas.

Si aucun de ces scénarios ne s'accorde à vos besoins, ou si vous voulez un réglage très fin, vous devrez modifier les fichiers de configuration qui se trouvent dans le répertoire /etc/exim4. D'autres informations sur le programme exim4 se trouvent dans /usr/share/doc/exim4.

7.3. Se connecter

Après avoir installé les paquets, vous vous retrouvez face à l'invite de connexion (login). Connectezvous en utilisant le nom d'utilisateur et le mot de passe que vous avez choisi. Vous pouvez maintenant utiliser votre système.

Si vous êtes un nouvel utilisateur, vous voudrez peut-être parcourir la documentation qui est déjà installée sur votre système. Il existe plusieurs systèmes de documentation ; un travail est en cours afin de les intégrer dans un tout cohérent. Vous trouverez ci-dessous quelques points de départ.

La documentation qui accompagne les programmes que vous avez installés se trouve dans le répertoire /usr/share/doc/, dans un sous-répertoire qui porte le nom du programme. Par exemple, le Guide de l'utilisateur d'apt, programme qui installe d'autres programmes sur votre système, se situe dans le fichier /usr/share/doc/apt/guide.html/index.html.

De plus, il y a quelques répertoires spéciaux dans le répertoire /usr/share/doc/. Les HOWTO Linux sont installés au format .gz dans le répertoire /usr/share/doc/HOWTO/en-txt/. Une fois **dhelp** installé, vous pouvez consulter avec votre navigateur le fichier /usr/share/doc/HTML/index.html qui contient un index sur la documentation installée.

Un moyen facile de consulter ces documents est d'exécuter cd /usr/share/doc/, puis de saisir lynx suivi d'un espace et d'un point (le point représente le répertoire courant).

Vous pouvez aussi saisir info command ou man command pour obtenir des informations sur la plupart des commandes disponibles depuis l'interpréteur de commandes. En exécutant help, vous afficherez l'aide sur les commandes de l'interpréteur de commandes. Et si vous tapez une commande suivie par --help, un court résumé sur l'usage de cette commande sera affiché. Si le résultat d'une commande défile au-delà du haut de l'écran, tapez | more après la commande de façon à provoquer une pause entre chaque écran. Pour voir une liste de toutes les commandes disponibles qui commencent par une lettre donnée, tapez cette lettre, suivie de deux fois la touche de tabulation.

Pour une introduction plus complète sur Debian et GNU/Linux, voyez /usr/share/doc/debian-guide/html/noframes/index.html.

Chapitre 8. Les prochaines étapes

8.1. Si vous débutez sous Unix

Si vous ne connaissez pas Unix, vous devrez sans doute acheter et lire quelques livres sur le sujet. Vous trouverez de bonnes informations dans la Réference Debian (http://www.debian.org/doc/user-manuals#quick-reference). La liste des FAQ Unix (http://www.faqs.org/faqs/unix-faq/) référence beaucoup de documents UseNet à valeur historique. La Foire Aux Questions UNIX (ftp://rtfm.mit.edu/pub/usenet/news.answers/unix-faq/faq/) contient un certain nombre de références à des livres et à des groupes de discussion Usenet qui pourront vous aider. Vous pouvez également regarder la User-Friendly Unix FAQ (http://www.camelcity.com/~noel/usenet/cuuf-FAQ.htm).

Linux est une implémentation d'Unix. Le projet de documentation Linux (LDP) (http://www.tldp.org/) rassemble un certain nombre de *HOWTO* et de livres en ligne relatifs à Linux. La plupart de ces documents peuvent être installés sur votre machine ; il suffit d'installer le paquet doc-linux-fr, et de consulter les documentations disponibles dans le répertoire /usr/share/doc/LANG/fr/HOWTO. La version originale en anglais des HOWTO du LDP est également disponible dans les paquets doc-linux-html (documentation au format HTML) et doc-linux-text (documentation au format ASCII), et s'installe dans /usr/share/doc/HOWTO. D'autres versions traduites des HOWTO du LDP sont également disponibles sous forme de paquets Debian.

8.2. S'orienter dans Debian

Debian est un peu différente des autres distributions. Même si vous êtes habitué à travailler avec d'autres distributions Linux, il y a quelques détails que vous devez connaître à propos de Debian pour garder votre système en bon état. Le contenu de ce chapitre vous aidera à vous orienter ; ce n'est pas un didacticiel sur l'utilisation de Debian, mais un bref coup d'oeil sur le système, pour les gens pressés.

8.2.1. Le système des paquets

Le concept le plus important à assimiler est le système de gestion des paquets. La plus grande partie de votre système est sous le contrôle du système de gestion des paquets. Cela inclut :

- /usr (en excluant /usr/local)
- /var (vous pourriez créer /var/local en toute sécurité)
- /bin
- /sbin
- /lib

Par exemple, si vous remplacez /usr/bin/perl, cela fonctionnera, mais lors de la prochaine mise à jour du paquet perl, le fichier que vous avez modifié sera remplacé. Les experts évitent cela en marquant le paquet comme « à conserver (hold) » avec l'application **aptitude**.

L'une des meilleures méthodes d'installation est la méthode apt. Vous pouvez utiliser la version ligne de commande **apt-get**, ou bien la version plein écran aptitude. Notez qu'apt permet de fusionner plusieurs sources pour les paquets : main, contrib et non-free ; ainsi vous avez accès aussi bien aux paquets soumis à des restrictions d'export qu'aux versions standard.

8.2.2. Gestion des versions des applications

Les différentes versions des applications sont gérées par update-alternatives. Si vous utilisez plusieurs versions de vos applications, lisez la page de manuel de update-alternatives.

8.2.3. Gestion des tâches récurrentes

Les actions dont l'administrateur a la responsabilité devraient se trouver dans le répertoire /etc, car ce sont des fichiers de configuration. Si un travail doit être répété chaque jour, semaine ou mois, mettez simplement un script ou une application exécutant cette action respectivement dans /etc/cron.daily, /etc/cron.weekly et /etc/cron.monthly. Ils seront appelés depuis /etc/crontab, et lancés consécutivement par ordre alphabétique.

D'un autre côté, si vous avez une tâche qui doit être lancée par un utilisateur particulier, ou à une heure ou à une fréquence bien précise, vous pouvez utiliser /etc/crontab, ou, mieux encore, /etc/cron.d/votre_choix. Ces fichiers possèdent aussi un champ supplémentaire qui permet de spécifier sous quelle identité l'action sera exécutée.

Dans tous les cas, vous n'avez qu'à modifier les fichiers, et cron le remarquera automatiquement. Vous n'avez pas à lancer de commandes spéciales. Pour plus d'informations, lisez cron(8), crontab(5) et /usr/share/doc/cron/README.Debian.

8.3. Pour aller plus loin

Si vous avez besoin d'informations à propos d'un programme particulier, vous devriez d'abord essayer man programme, ou info programme.

Vous pourrez également trouver beaucoup de documents utiles dans /usr/share/doc. En particulier, /usr/share/doc/HOWTO et /usr/share/doc/FAQ contiennent beaucoup d'informations intéressantes. Pour signaler des bogues, regardez les fichiers /usr/share/doc/debian/bug*. Pour connaître des informations spécifiques à Debian pour un programme particulier, lisez /usr/share/doc/(nom du paquet)/README.Debian.

Le site web Debian (http://www.debian.org/) contient beaucoup de documentation sur Debian. Vous pouvez consulter en particulier la FAQ Debian (http://www.debian.org/doc/FAQ/) et la Référence Debian (http://www.debian.org/doc/user-manuals#quick-reference). Le Projet de documentation sur Debian (http://www.debian.org/doc/ddp) répertorie d'autres documents sur Debian. Les membres de la communauté Debian s'entraident; pour vous abonner à une ou plusieurs listes de diffusion Debian, voyez la page d'abonnement aux listes de diffusion (http://www.debian.org/MailingLists/subscribe). Enfin les archives des listes de diffusion (http://lists.debian.org/) sont une mine d'informations sur Debian.

Le Projet de documentation sur Linux (http://www.tldp.org/) est une source d'informations générales sur GNU/Linux. Vous y trouverez des guides et des liens vers d'autres informations sur le système GNU/Linux.

8.4. Compiler un nouveau noyau

Pourquoi vouloir compiler un nouveau noyau ? Ce n'est en général pas nécessaire, car le noyau par défaut de Debian reconnaît la plupart des configurations. En outre différents noyaux sont disponibles. Vous devriez chercher s'il n'existe pas de paquet contenant un noyau qui corresponde à votre matériel. Cependant, il peut être utile de compiler un nouveau noyau dans les cas suivants :

- Gérer des périphériques spéciaux, ou des conflits de périphériques dans les noyaux par défaut ;
- Activer des options qui ne sont pas incluses dans le noyau par défaut, permettre la gestion de la mémoire haute par exemple;
- Optimiser le noyau en enlevant les pilotes inutiles, ce qui peut accélérer le démarrage de la machine :
- Créer un noyau monolithique à la place d'un noyau modulaire ;
- Utiliser une version de développement du noyau ;
- Mieux connaître le noyau linux.

8.4.1. Gestion des images du noyau

N'ayez pas peur de compiler un nouveau noyau. C'est amusant et vous apprendrez de nouvelles choses.

Pour compiler un noyau « façon Debian », vous avez besoin des paquets suivants : fakeroot, kernel-package, kernel-source-2.4.27 (la version la plus récente lors de la rédaction de ce document) et quelques autres qui sont probablement déjà installés sur votre machine (pour la liste complète, voyez /usr/share/doc/kernel-package/README.gz).

Cette méthode crée un .deb à partir des sources du noyau ; si vous utilisez des modules non standard, elle incorpore aussi ces dépendances dans le .deb. C'est une bonne solution pour gérer les images du noyau ; le répertoire /boot contiendra le noyau, le System.map et une sauvegarde du fichier de configuration utilisé pour ce paquet.

Il faut remarquer qu'il n'est pas *obligatoire* de compiler votre noyau « façon Debian »; mais vous vous rendrez compte qu'utiliser le système de gestion des paquets pour gérer les noyaux rend leur installation plus simple et plus sûre. En fait, vous pouvez simplement télécharger les sources de Linus et non pas kernel-source-2.4.27, tout en utilisant la méthode de compilation kernel-package.

Notez que vous trouverez une documentation complète sur l'utilisation de kernel-package dans le répertoire /usr/share/doc/kernel-package. Cette section ne contient qu'un bref didacticiel.

Dans ce qui suit, nous supposerons que vous pouvez tout faire sur votre machine et que vous allez extraire les sources du noyau dans votre répertoire personnel ¹. Nous supposerons aussi que la version du noyau est 2.4.27. Allez dans le répertoire où vous voulez désarchiver les sources et désarchivez-les avec tar xjf /usr/src/kernel-source-2.4.27.tar.bz2, et déplacez-vous dans le répertoire kernel-source-2.4.27 qui vient d'être créé.

Maintenant, vous pouvez configurer votre noyau. Exécutez make xconfig si X11 est installé, configuré et lancé. Exécutez make menuconfig dans le cas contraire (vous aurez alors besoin du paquet libncurses5-dev). Prenez le temps de lire l'aide en ligne et de choisir judicieusement les options

^{1.} D'autres endroits sont possibles pour extraire les sources et construire le noyau, mais c'est le plus facile car aucun droit spécial n'est demandé.

à activer. En cas de doute, il est souvent préférable d'inclure les pilotes de périphériques (tels que les contrôleurs SCSI, cartes Ethernet, etc.) que vous ne connaissez pas bien. Faites attention : les autres options, non spécifiques au matériel, doivent être laissées à leur valeur par défaut si vous ne les comprenez pas. N'oubliez pas de sélectionner « Kernel module loader » dans la section « Loadable module support » (elle n'est pas sélectionnée par défaut), sinon votre système Debian risque d'avoir des problèmes.

Nettoyez l'arborescence des sources et réinitialisez les paramètres de kernel-package. Pour ce faire, tapez make-kpkg clean.

Maintenant, compilez votre noyau : fakeroot make-kpkg --revision=custom.1.0 kernel_image. Bien sûr, le numéro de version « 1.0 » peut être changé ; il s'agit juste d'un moyen de suivre vos différentes versions du noyau. De la même façon, vous pouvez remplacer le mot « custom\ » par ce que vous voulez (par exemple le nom d'une machine). La compilation d'un noyau peut être assez longue, selon la puissance de votre machine.

Une fois la compilation terminée, vous pouvez installer votre noyau personnalisé comme n'importe quel autre paquet. En étant superutilisateur, tapez dpkg -i ../kernel-image-2.4.27-subarchitecture_custom.1.0_alpha.deb. La partie subarchitecture est une sous-architecture optionnelle, suivant les options de compilation que vous avez définies. dpkg -i kernel-image... installera votre noyau ainsi que les autres fichiers qui lui seront nécessaires. Par exemple, le fichier System.map sera installé correctement (très utile pour le débogage des problèmes de noyau) et un fichier /boot/config-2.4.27 sera installé, qui contiendra votre configuration noyau. Votre nouveau paquet kernel-image-2.4.27 est tellement malin qu'il utilise automatiquement le programme d'amorçage de votre plateforme pour mettre à jour l'information sur l'image de noyau utilisée pendant le démarrage, sans qu'il soit nécessaire de réexécuter le programme d'amorçage. Si vous avez créé un paquet pour les modules, par exemple si vous avez PCMCIA, vous devrez installer ce paquet également.

Vous devez maintenant redémarrer votre système : lisez attentivement les éventuels avertissements produits par les étapes précédentes, puis exécutez shutdown -r now.

Pour plus d'informations sur kernel-package, lisez la documentation dans /usr/share/doc/kernel-package.

Annexe A. Guide de l'installation

Ce document décrit l'installation de Debian GNU/Linux sarge pour Alpha (« alpha ») avec le nouvel installateur Debian. Il reproduit le processus d'installation et donne des informations valables pour la plupart des installations. Quand des informations supplémentaires sont nécessaires, nous renvoyons aux explications plus détaillées du Manuel d'installation de Debian GNU/Linux.

A.1. Préliminaires

Si vous rencontrez des erreurs lors de l'installation, veuillez vous référer à Section 5.3.4 pour savoir comment les signaler. Si ce document ne répond pas à vos questions, posez-les sur la liste de diffusion debian-boot (debian-boot@lists.debian.org) ou demandez sur IRC (#debian-boot, réseau freenode).

A.2. Démarrer l'installateur

L'équipe debian-cd fournit des images sur cédérom contenant l'installateur sur la page Debian CD (http://www.debian.org/CD/). Pour savoir où trouver des cédéroms, lisez Section 4.1.

Certaines méthodes d'installation demandent des images différentes des images sur cédérom. La Section 4.2.1 explique comment trouver des images sur les miroirs Debian.

Les sections suivantes donnent des précisions sur les images nécessaires pour chaque type d'installation.

A.2.1. Cédérom

Pour installer sarge avec l'installateur, il existe deux sortes d'image, appelées images « netinst ». Ces images s'amorcent à partir du cédérom et installent les paquets en les récupérant sur le réseau, d'où le nom, « netinst ». La différence entre ces images est que, sur l'image complète, sont inclus les paquets du système de base, tandis que sur l'image « business card » ces paquets sont récupérés sur le web. Si vous préférez, vous pouvez obtenir une image complète qui n'a pas besoin du réseau pour l'installation. Seul le premier cédérom de cet ensemble est nécessaire.

Téléchargez l'image que vous préférez et gravez-la sur un cédérom.

A.2.2. Amorcer sur le réseau

Il est aussi possible de lancer l'installateur Debian à partir du réseau. Les différentes méthodes pour cet amorçage réseau dépendent de l'architecture et de la configuration. Les fichiers dans netboot/servent à l'amorçage de l'installateur.

A.2.3. Amorcer depuis un disque dur

Il est possible de faire une installation sans utiliser de support amovible, par exemple avec un disque dur possédant déjà un autre système d'exploitation. Téléchargez hd-media/initrd.gz, hd-media/vmlinuz et une image CD dans le répertoire racine du disque. Assurez-vous que le nom de l'image CD se termine par .iso. Maintenant, il suffit d'amorcer Linux avec initrd.

A.3. Installation

Après le démarrage de l'installateur, l'écran initial est affiché. Appuyez sur la touche **Enter** pour amorcer, ou bien lisez les instructions sur les autres méthodes d'amorçage et sur les paramètres (voyez la Section 5.2).

On vous demandera ensuite de choisir une langue. Déplacez-vous avec les flèches et appuyez sur la touche **Enter** quand vous avez choisi. On vous demandera un pays, à choisir parmi les pays où cette langue est parlée. Si votre pays n'est pas dans la première liste, une liste contenant tous les pays est disponible.

On vous demandera de confirmer la carte clavier. Choisissez la carte par défaut, sauf si vous en connaissez une meilleure.

Patientez maintenant, tandis que l'installateur détecte le matériel et charge ses composants à partir du cédérom, par exemple...

Ensuite l'installateur recherche le matériel réseau et configure le réseau avec DHCP. Si vous n'êtes pas sur un réseau ou si vous n'utilisez pas DHCP, vous aurez la possibilité de configurer vous-même le réseau.

Il est temps maintenant de partitionner les disques. Vous aurez d'abord la possibilité de partitionner automatiquement soit un disque entier soit l'espace libre d'un disque. C'est la méthode recommandé pour les débutants ou pour les gens pressés. Si vous ne voulez pas du partitionnement automatique, choisissez de partitionner vous-même.

L'écran suivant montre la table des partitions, avec les systèmes de fichiers et les points de montage. Choisissez une partition que vous voulez modifier ou détruire. Si vous aviez choisi le partitionnement automatique, il vous suffira de sélectionner Terminer le partitionnement dans le menu pour accepter ce qui a été fait. N'oubliez pas qu'il vous faut au moins une partition d'échange et une partition racine montée sur /. D'autres informations sur le partitionnement se trouvent dans l'Annexe B.

L'installateur formate les partitions et installe le système de base, ce qui peut prendre du temps. Puis le noyau est installé.

La dernière étape est l'installation d'un programme d'amorçage. Si l'installateur a détecté d'autres systèmes d'exploitation sur la machine, il les ajoutera au menu du programme d'amorçage.

L'installateur annonce maintenant que l'installation est terminée. Retirez le cédérom ou le support que vous avez utilisé et appuyez sur la touche **Enter** pour réamorcer la machine. Cela vous conduira à la deuxième étape du processus d'installation qui est expliquée dans le Chapitre 7.

Si vous avez besoin d'autres informations sur ce processus d'installation, voyez le Chapitre 6.

A.4. Envoyez-nous un rapport d'installation

Si l'installateur Debian a installé correctement le système, veuillez prendre le temps de nous envoyer un rapport. Il y a un modèle, install-report.template, dans le répertoire /root du système nouvellement installé. Remplissez-le et envoyez-le comme un rapport de bogue pour le paquet installation-reports. Voyez les explications dans la Section 5.3.4.

Si l'installation n'a pas atteint base-config ou a rencontré d'autres problèmes, vous avez sans doute trouvé un bogue dans l'installateur. Il est nécessaire que nous le connaissions pour améliorer l'installateur. Veuillez prendre le temps de nous le signaler. Vous pouvez utiliser le modèle précédent. Si l'installateur a complètement échoué, voyez la Section 5.3.3.

A.5. Et ils eurent...

Nous espérons que votre système Debian vous plaira et qu'il sera utile. Vous pouvez maintenant lire le Chapitre 8.

Annexe B. Partitionnement pour Debian

B.1. Décider des partitions et de leurs tailles

Au strict minimum, GNU/Linux a besoin d'une partition pour lui-même. Vous pouvez avoir une seule partition contenant le système entier, les applications et vos fichiers personnels. La plupart des gens pensent qu'une partition d'échange (swap) est nécessaire, bien que ce ne soit pas tout à fait vrai. Le « Swap » est l'espace de travail du système d'exploitation ; il lui permet d'utiliser de l'espace disque comme « mémoire virtuelle ». En le plaçant sur une partition séparée, Linux peut en faire un usage bien plus efficace. Il est possible de forcer Linux à utiliser un fichier normal comme espace d'échange, mais ce n'est pas recommandé.

La plupart des gens choisissent d'utiliser plus de partitions que le minimum requis pour GNU/Linux. Il y a deux raisons pour que vous ayez envie de diviser le système de fichiers en de nombreuses petites partitions. La première concerne la sécurité. Si le système de fichiers est corrompu, en général une seule partition est affectée. Donc, vous n'avez à remplacer (à partir des sauvegardes que vous avez soigneusement conservées) qu'une partie de votre système. Au minimum, vous devriez envisager la création de ce qui est communément appelée la « partition racine ». Elle contient les composants les plus essentiels du système. Si une autre partition est corrompue, vous pourrez toujours amorcer Linux pour réparer le système. Cela peut vous épargner le désagrément d'avoir à réinstaller le système entier.

La seconde raison est généralement plus importante pour une entreprise, mais cela dépend vraiment de l'utilisation de votre machine. Par exemple, recevoir des envois en nombre de messages électroniques peut facilement remplir une partition. Si vous avez placé /var/mail sur sa propre partition, la majeure partie du système marchera même si vous êtes submergé de courrier non sollicité (*spam*).

Le seul inconvénient qu'il y a à utiliser plusieurs partitions est qu'il est souvent difficile de connaître ses besoins à l'avance. Si vous faites une partition trop petite, vous aurez soit à réinstaller le système soit à déplacer constamment des fichiers pour faire de la place sur la partition trop petite. D'un autre côté, si vous faites une partition trop grande, vous aurez perdu de l'espace pouvant être utile ailleurs. L'espace disque est bon marché de nos jours, mais pourquoi jeter votre argent par les fenêtres ?

B.2. L'arborescence des fichiers

Debian GNU/Linux adhère à la norme sur l'organisation des systèmes de fichiers (http://www.pathname.com/fhs/) pour le nommage des fichiers et des répertoires. Cette norme permet aux utilisateurs et aux auteurs de logiciel de prévoir l'emplacement des fichiers et des répertoires. Le répertoire racine est simplement représenté par la barre oblique /. Au niveau de la racine, tous les systèmes Debian incluent ces répertoires :

Répertoire Contenu	
bin	Binaires (exécutables) des commandes essentielles
boot	Fichiers statiques pour le programme d'amorçage
dev	Fichiers des pilotes de périphériques
etc	Configuration système propre à la machine
home	Répertoires personnels des utilisateurs

Répertoire	Contenu
lib	Bibliothèques partagées et modules noyaux essentiels
media	Points de montage pour les supports amovibles
mnt	Point de montage pour les montages temporaires
proc	Répertoire virtuel pour les informations système (noyaux 2.4 et 2.6)
root	Répertoire personnel de l'utilisateur root
sbin	Exécutables système essentiels
sys	Répertoire virtuel pour les informations système (noyaux 2.6)
tmp	Fichiers temporaires
usr	Hiérarchie secondaire
var	Données variables
opt	Répertoire pour d'autres logiciels

La liste suivante décrit quelques caractéristiques importantes des répertoires et des partitions. L'utilisation de l'espace disque varie grandement avec la configuration du système et les modes d'utilisation. Les principes généraux énoncés ici constitue une introduction au partitionnement des disques.

- La partition racine / doit toujours contenir les répertoires : /etc, /bin, /sbin, /lib et /dev, sinon votre système ne pourra pas démarrer. En général, 150 à 250 Mo sont nécessaires ;
- /usr : tous les programmes des utilisateurs (/usr/bin), les bibliothèques (/usr/lib), la documentation (/usr/share/doc), etc. sont dans ce répertoire. Cette partie du système de fichiers a besoin du plus d'espace possible. Vous devriez disposer d'au moins 500 Mo d'espace disque. Si vous voulez installer plus de paquets, vous devriez augmenter l'espace disque attribué à ce répertoire. Pour installer un poste de travail ou un serveur « généreux », 4 à 6 GO sont nécessaires ;
- /var: toutes les données variables comme les articles des forums usenet, les messages électroniques, les sites web, le cache du système des paquets, etc. seront placées dans ce répertoire. La place nécessaire dépend énormément de l'usage que vous faites de votre ordinateur, mais pour la plupart des administrateurs, elle sera dictée par la charge due aux outils de gestion des paquets. Si vous envisagez de faire une installation complète de tout ce que Debian peut vous offrir en une seule fois, réserver 2 à 3 Go d'espace pour /var devrait suffire. Si vous préférez installer le tout en plusieurs étapes (p. ex. d'abord les services et utilitaires, puis les outils texte, puis X11...), vous pouvez vous contenter de 300 à 500 Mo. Si l'espace disque est une contrainte majeure et que vous ne voulez pas faire de mises à jour majeures, vous pouvez vous en tirer avec 30 à 40 Mo;
- /tmp: si un programme crée des données temporaires, elles seront probablement placées dans /tmp. 40 à 100 Mo devraient suffire. Certaines applications, gestionnaires d'archives, outils pour créer des CD/DVD, logiciels multimedia, peuvent se servir de /tmp pour stocker provisoirement des images. Si vous comptez utiliser ces programmes, vous devrez recalculer l'espace nécessaire dans /tmp.
- /home : chaque utilisateur mettra ses données dans un sous-répertoire de ce répertoire. La place nécessaire dépend du nombre d'utilisateurs sur le système, et du genre de fichiers qu'ils devront stocker. Selon l'utilisation du système, vous devriez réserver environ 100 Mo par utilisateur, à

adapter selon vos besoins. Réservez beaucoup plus d'espace si des fichiers multimedia (MP3, films) seront conservés dans le répertoire.

B.3. Schéma de partitionnement recommandé

Pour les nouveaux utilisateurs, les machines Debian personnelles ou familiales, et autres systèmes mono-utilisateurs, une simple partition / (plus celle d'échange) est sans doute la solution la plus simple. Cependant, si votre partition a une taille supérieure à 6 Go, choisissez le type ext3 pour votre système de fichier. Les partitions de type ext2 ont besoin d'une vérification périodique de l'intégrité du système de fichier, et cela peut prendre au démarrage un temps non négligeable lorsque la taille de la partition est importante.

Pour les systèmes multi-utilisateurs, ou les systèmes avec beaucoup d'espace disque, il vaut mieux placer les répertoires /usr, /var, /tmp, et /home chacun sur une partition distincte de la partition /.

Dans certains cas, vous pourriez avoir besoin d'une partition /usr/local distincte si vous prévoyez d'installer beaucoup de programmes qui ne font pas partie de la distribution Debian. Si votre machine est destinée à être un serveur de courrier, vous pourriez avoir besoin de mettre aussi /var/mail sur une partition distincte. Parfois, mettre le répertoire /tmp sur sa propre partition, par exemple 20 à 50 Mo peut être une bonne idée. Si vous mettez sur pied un serveur avec beaucoup d'utilisateurs, il est généralement intéressant d'avoir une grande partition distincte pour /home. En général, la méthode de partitionnement varie d'un ordinateur à l'autre, en fonction de son usage.

Pour des systèmes très complexes, consultez le HOWTO Multi Disk (http://www.tldp.org/HOWTO/Multi-Disk-HOWTO.html). Il contient des informations très précises qui intéresseront les fournisseurs d'accès à Internet et les personnes installant des serveurs.

En ce qui concerne la taille de la partition d'échange (swap), les avis sont partagés. Une règle traditionnelle, qui fonctionne bien, est d'utiliser autant d'espace d'échange que de RAM. Dans la plupart des cas, cette taille ne devrait pas être inférieure à 16 Mo. Bien sûr, il y a des exceptions à cette règle. Si vous essayez de résoudre simultanément 10 000 équations sur une machine avec 256 Mo de RAM, vous pourriez avoir besoin d'un gigaoctet (ou plus) d'échange.

Sur les architectures 32 bits (i386, m68k, SPARC 32 bits et PowerPC), la taille maximale d'une partition d'échange est de 2 Go. Cela devrait suffire pour presque tous les systèmes. De toute façon, si vos besoins en espace d'échange sont aussi importants, vous devriez probablement essayer de disperser les partitions d'échange sur des disques différents (appelés aussi « spindles ») et, si possible, sur des canaux IDE ou SCSI différents. Le noyau équilibrera l'utilisation de l'espace d'échange entre les différentes partitions, afin d'obtenir de meilleures performances.

Avec une machine possédant 32 Mo de RAM et un disque IDE de 1.7 Go sur /dev/hda, on pourrait créer une partition de 500 Mo pour un système sur /dev/hda1, une partition d'échange de 32 Mo sur /dev/hda3 et une partition Linux d'environ 1,2 Go sur /dev/hda2.

Pour avoir une idée de la place nécessaire pour les tâches que vous pourriez avoir envie de rajouter à la fin de votre installation, consultez : Section C.3.

B.4. Noms des périphériques sous Linux

Le nom des disques et des partitions sous Linux peut être différent des autres systèmes d'exploitation. Vous devez connaître les noms utilisés lors de la création et du montage de partitions. Voici les principales conventions de nommage :

- Le premier lecteur de disquette est nommé /dev/fd0.
- Le second lecteur de disquette est nommé /dev/fdl.
- Le premier disque SCSI (selon l'ID SCSI) est nommé /dev/sda.
- Le deuxième disque SCSI (selon l'ID) est nommé /dev/sdb, etc.
- Le premier cédérom SCSI est nommé /dev/scd0, ou encore /dev/sr0.
- Le disque maître sur le contrôleur IDE primaire est nommé /dev/hda.
- Le disque esclave sur le contrôleur IDE primaire est nommé /dev/hdb.
- Les disques maître et esclave sur le deuxième contrôleur sont nommés respectivement /dev/hdc et /dev/hdd. Les nouveaux contrôleurs IDE peuvent avoir deux canaux fonctionnant comme deux contrôleurs distincts;

Les partitions sur chaque disque sont représentées en ajoutant un numéro au nom du disque : sda1 et sda2 représentent la première et la seconde partition du premier disque SCSI du système.

Voici un exemple concret. Supposons que vous ayez deux disques SCSI, l'un à l'adresse SCSI 2 et l'autre à l'adresse SCSI 4. Le premier disque (à l'adresse 2) est nommé sda, et le second sdb. Si le disque sda a trois partitions, elles s'appelleront sda1, sda2 et sda3. La même convention s'applique au disque sdb et à ses partitions.

Notez que si vous avez deux adaptateurs SCSI (c.-à-d. des contrôleurs SCSI), l'ordre de nommage des disques peut-être embrouillé. La meilleure solution est de regarder les messages au démarrage, en supposant que vous connaissiez les modèles ou les tailles des disques.

B.5. Programmes de partitionnement de Debian

Plusieurs sortes d'utilitaires de partitionnement ont été adaptés par les développeurs Debian pour tourner sur différents types de disques et d'architectures matérielles. Voici les programmes qui sont disponibles sur votre architecture :

partman

C'est le partitionneur que recommande Debian. Ce « couteau suisse » sait aussi redimensionner des partitions et monter des systèmes de fichiers sur des points de montage.

fdisk

C'est le premier partitionneur de disque pour Linux... bon pour les gourous.

Faites attention si vous avez des partitions FreeBSD sur votre machine. Les noyaux d'installation reconnaissent ces partitions, mais la façon dont **fdisk** les représente (ou pas) peut faire varier les noms des périphériques. Lisez attentivement le Linux+FreeBSD HOWTO (http://www.tldp.org/HOWTO/Linux+FreeBSD-2.html)

cfdisk

C'est un partitionneur simple à utiliser, fonctionnant en mode plein écran... pour nous autres.

Remarquez que **cfdisk** ne reconnaît pas du tout les partitions FreeBSD et que les noms des périphériques peuvent être différents.

L'un de ces programmes sera lancé par défaut quand vous sélectionnerez : Partitionner un disque dur. Si ce n'est pas celui que vous souhaitez utiliser, quittez le programme de partitionnement, allez sur la console 2 (tty2) en appuyant simultanément sur les touches Alt et F2, et saisissez le nom du

programme que vous voulez utiliser (et ses arguments, si nécessaire). Ensuite, sautez l'étape Partitionner un disque dur de l'installateur et continuez à l'étape suivante.

Si vous souhaitez que cela fonctionne avec plus de 20 partitions sur votre disque ide, vous devrez créer vous-même les périphériques à partir de la partition n° 21. L'étape suivante d'initialisation de la partition échouera sauf si le bon périphérique est présent. Comme exemple, voici les commandes que vous pouvez utiliser dans tty2 ou sous « Exécuter un shell », pour ajouter le périphérique nécessaire à la la partition 21 :

```
# cd /dev
# mknod hda21 b 3 21
# chgrp disk hda21
# chmod 660 hda21
```

Le démarrage sur le nouveau système échouera sauf si les bons périphériques sont présents sur le système en question. Après avoir installé le noyau et les modules, exécutez :

```
# cd /target/dev
# mknod hda21 b 3 21
# chgrp disk hda21
# chmod 660 hda21
```

B.5.1. Partitionnement pour Alpha

Pour démarrer Debian à partir d'une console SRM (seule méthode possible pour amorcer sur un disque avec sarge), le disque d'amorçage doit avoir une table des partitions de type BSD et non pas de type DOS. Rappelez-vous que le bloc de démarrage SRM est incompatible avec les tables de partition MS-DOS — voyez Section 5.1.1. Pour l'architecture alpha, **partman** créera une table de type BSD; si le disque contient une table de type DOS, il faudra supprimer les partitions existantes pour que partman puisse modifier le disque.

Si vous voulez utiliser fdisk pour partitionner le disque et si le disque ne contient pas une table de type BSD, vous devez utiliser la commande « b » pour passer en mode BSD.

À moins que vous ne vouliez utiliser le disque que vous partitionnez pour des systèmes d'exploitation dérivés de Tru64 Unix ou de 4.4BSD-Lite (FreeBSD, OpenBSD ou NetBSD), il est suggéré de *ne pas* créer une 3e partition contenant le disque entier. Cela n'est pas nécessaire à **aboot**, et peut, en fait, être source de confusion, car l'utilitaire **swriteboot** qui installe par défaut **aboot** sur le secteur de démarrage se plaindra de ce qu'une partition empiète sur le bloc de démarrage

De même, puisque **aboot** est écrit sur les premiers secteurs du disque (actuellement, il occupe environ 70 Ko, soit 150 secteurs), vous *devez* lui laisser suffisamment d'espace libre en début de disque. Par le passé, on suggérait de créer une petite partition en début de disque, non formatée. Pour la même raison que celle évoquée plus haut, nous suggérons maintenant de ne pas faire cela sur les disques qui ne seront utilisés que pour GNU/Linux. Avec **partman**, cette partition est toujours créée pour des raisons pratiques.

Annexe C. Informations diverses

C.1. Exemple de fichier de préconfiguration

Ce fichier est un exemple complet et fonctionnel de fichier de préconfiguration pour les installations automatiques. Son usage est expliqué dans Section 4.4. N'hésitez pas à modifier certaines lignes avant d'utiliser ce fichier.

Note : Pour bien présenter cet exemple, nous avons dû couper certaines lignes. C'est le caractère « \ » qui marque ces coupures, avec un renfoncement à la ligne suivante. Dans un vrai fichier de préconfiguration, les lignes doivent êtres jointes en *une seule ligne*. Si elles ne le sont pas, la préconfiguration échouera avec des conséquences imprévisibles.

Un fichier d'exemple « très clair » se trouve dans ../example-preseed.txt.

```
#### Pour commencer.
# Pour utiliser un fichier de préconfiguration, vous devez d'abord amorcer
# l'installateur et lui dire où se trouve ce fichier. Il suffit de passer un
# paramètre d'amorçage au noyau, soit au moment de l'amorçage, soit en modifiant
# le fichier syslinux.cfg (ou un fichier du même type) pour ajouter les paramètres
# à la fin des lignes « append » pour le noyau.
# Si vous faites une installation par le réseau, utilisez ce paramètre :
  preseed/url=http://host/path/to/preseed
# Si vous recréez un cédérom, vous pouvez utiliser celui-ci :
   preseed/file=/cdrom/preseed
# Si vous faites une installation à partir d'un support USB, utilisez ce
# paramètre et mettez le fichier de préconfiguration dans le répertoire racine
# de la clé USB.
  preseed/file=/hd-media/preseed
# Faites attention à mettre le fichier à l'endroit indiqué.
# On ne peut pas automatiser certaines étapes de l'installation avec certains types
# de préconfiguration car les questions sont posées avant que le fichier
# ne soit chargé. Si par exemple le fichier est téléchargé sur le réseau, la
# configuration du réseau doit être faite préalablement. L'une des raisons d'utiliser
# la préconfiguration avec initrd est qu'il est alors possible de préconfigurer
# ces étapes.
# Quand on ne peut pas utiliser un fichier de préconfiguration pour préconfigurer
# certaines étapes, on peut quand même automatiser l'installation car il est possible
# de passer des paramètres au noyau sur la ligne de commande. Il suffit d'indiquer
# une paire de type path/to/variable=valeur pour toutes les variables listées
# ci-dessous.
# Pendant que vous y êtes, vous pourriez déclarer un debconf/priority=critical
# pour éviter la plupart des questions, même s'il n'y en a pas beaucoup dans
# la préconfiguration qui suit.
# Et vous pourriez aussi mettre le compte à rebours à 1 dans syslinux.cfg et
```

éviter ainsi d'avoir à appuyer sur la touche Entrée pour lancer

```
# l'installateur.
# Il faut savoir que le noyau accepte un maximum de huit options ligne de
# de commandes et huit variables d'environnement. Et les options ajoutées
# par l'installateur sont comprises dans ces chiffres. S'il y a dépassement,
# les noyaux 2.4 ignorent les options en trop et les noyaux 2.6 paniquent.
# À partir des noyaux 2.6.9, vous pouvez employer 32 options ligne de
# commandes et 32 variables d'environnement.
# On peut sans risque supprimer certaines options par défaut, comme
# 'vga=normal'. Cela permet de rajouter autant d'options
# pour la préconfiguration.
# On ne peut pas préconfigurer la langue, le pays ou le clavier. Vous devez
# à la place utiliser les paramètres du noyau. Par exemple :
# languagechooser/language-name=French
# countrychooser/shortlist=fr_FR
# console-keymaps-at/keymap=fr-latin9
#### Configuration du réseau.
# Bien sûr, si vous récupérez le fichier de préconfiguration sur le réseau,
# cela ne marchera pas ! Mais c'est parfait si vous amorcez à partir d'un
# cédérom ou d'une clé USB. Vous pouvez aussi ajouter des paramètres réseau
# aux paramètres du noyau si vous récupérez le fichier de préconfiguration
# sur le réseau.
# Netcfg choisira une interface connectée si possible. Cela empêchera d'afficher
# une liste s'il y a plusieurs interfaces.
d-i netcfg/choose_interface select auto
# Quand le serveur dhop est lent et que l'installateur s'arrête pour l'attendre,
# ceci peut être utile.
#d-i netcfg/dhcp_timeout string 60
# Si vous préférez configurer vous-même le réseau, voici comment faire :
#d-i netcfg/disable_dhcp boolean true
#d-i netcfg/get_nameservers string 192.168.1.1
#d-i netcfg/get_ipaddress string 192.168.1.42
#d-i netcfg/get_netmask string 255.255.255.0
#d-i netcfg/get_gateway string 192.168.1.1
#d-i netcfg/confirm_static boolean true
# Remarquez que les valeurs données par dhcp, nom de domaine ou nom de
# machine, prennent le pas sur les valeurs déclarées ici. Cependant,
# cette déclaration empêche que les questions ne soient posées même si les
# valeurs viennent de dhcp.
d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain string unassigned-domain
# Supprimer le dialogue irritant sur la clé WEP.
d-i netcfg/wireless_wep string
# Et l'étonnant nom de machine dhcp que certains FAI utilisent comme mot de
#d-i netcfg/dhcp_hostname string radish
```

Valeurs pour les miroirs

```
d-i mirror/country string enter information manually
d-i mirror/http/hostname string http.us.debian.org
d-i mirror/http/directory string /debian
d-i mirror/suite string testing
d-i mirror/http/proxy string
### Partitionnement.
# Si le système possède un espace libre, vous pouvez ne partitionner que cet
# espace.
#d-i partman-auto/init_automatically_partition \
    select Use the largest continuous free space
# Vous pouvez aussi choisir un disque entier. Le format de son nom peut être
# donné selon le format devfs ou le format traditionnel.
# Par exemple, pour utiliser le premier disque connu sous devfs :
d-i partman-auto/disk string /dev/discs/disc0/disc
# Vous pouvez choisir parmi tous les schémas prédefinis...
d-i partman-auto/choose_recipe select \
   Tous les fichiers dans une seule partition (recommandé aux débutants)
#d-i partman-auto/choose_recipe select Desktop machine
#d-i partman-auto/choose_recipe select Multi-user workstation
# ...ou donner vous-même votre schéma.
# Le format des schémas est expliqué dans le fichier
# devel/partman-auto-recipe.txt.
# Si vous avez la possibilité d'obtenir un schéma dans l'environnement de
# l'installateur, vous pouvez simplement pointer sur lui.
#d-i partman-auto/expert_recipe_file string /hd-media/recipe
# Sinon, vous pouvez écrire un schéma en une seule ligne. L'exemple suivant
# crée une petite partition /boot, une partition swap convenable, et utilise le
# reste de l'espace libre pour la partition racine :
#d-i partman-auto/expert_recipe string boot-root :: \
    20 50 100 ext3 $primary{ } $bootable{ } method{ format } format{ } \
    use_filesystem{ } filesystem{ ext3 } mountpoint{ /boot } . \
   500 10000 1000000000 ext3 method{ format } format{ } \
    use_filesystem{ } filesystem{ ext3 } mountpoint{ / } .
    64 512 300% linux-swap method{ swap } format{ } .
# Pour explication, voici le même schéma dans une forme plus lisible :
# boot-root ::
# 40 50 100 ext3
# $primary{ } $bootable{ }
# method{ format } format{ }
# use_filesystem{ } filesystem{ ext3 }
# mountpoint{ /boot }
# .
# 500 10000 1000000000 ext3
# method{ format } format{ }
# use_filesystem{ } filesystem{ ext3 }
# mountpoint{ / }
# 64 512 300% linux-swap
# method{ swap } format{ }
```

```
# Partman créera automatiquement les partitions sans demander de confirmation.
d-i partman/confirm_write_new_label boolean true
d-i partman/choose_partition select \
  Terminer le partitionnement et enregistrer les modifications sur le disque
d-i partman/confirm boolean true
#### Installation du programme d'amorçage.
# Grub est le programme d'amorçage par défaut (pour x86). Si vous préférez
# LILO, décommentez la ligne suivante :
#d-i grub-installer/skip boolean true
# Il n'y a aucun danger à donner ce paramètre : il installe grub sur le
# secteur d'amorçage principal s'il n'existe aucun autre système d'exploitation
# sur la machine.
d-i grub-installer/only_debian boolean true
# Ce paramètre installe grub sur le secteur d'amorçage principal même s'il
# existe un autre système d'exploitation, ce qui est moins sûr car il pourrait
# ne pas savoir amorcer cet autre système.
d-i grub-installer/with_other_os boolean true
# Vous pouvez aussi l'installer ailleurs que dans le secteur d'amorçage
# principal. Décommentez et modifiez les lignes suivantes :
#d-i grub-installer/bootdev string (hd0,0)
#d-i grub-installer/only-debian boolean false
#d-i grub-installer/with_other_os boolean false
#### Terminer la première étape de l'installation.
# Pour éviter le dernier message disant que l'installation est terminée.
d-i prebaseconfig/reboot_in_progress note
#### Les commandes du shell.
# La préconfiguration de l'installation n'est pas sécurisée. Rien dans
# dans l'installateur ne vérifie que des dépassements de tampons ou des
# exploitations quelconques des valeurs données dans ce fichier n'ont pas lieu.
# N'utilisez que les fichiers dont vous connaissez la provenance !
# Pour tout dire, et parce que c'est en général utile, voici un
# moyen d'exécuter automatiquement une commande dans l'installateur.
# La première commande est exécutée aussi tôt que possible, juste après
# la lecture du fichier.
#d-i preseed/early_command string anna-install some-udeb
# Cette commande est exécutée juste avant que l'installation ne se termine,
# mais quand le répertoire /target est encore utilisable.
#d-i preseed/late_command string echo foo > /target/etc/bar
# Cette commande est exécutée au moment où base-config commence.
#base-config base-config/early_command string echo hi mom
# Cette commande est exécutée après base-config, juste avant la connexion.
# C'est un bon moyen d'installer les paquets que vous voulez ou d'affiner la
# la configuration du système.
```

```
#base-config base-config/late_command string \
    apt-get install zsh; chsh -s /bin/zsh
###### Preseeding the 2nd stage of the installation.
#### Préconfiguration de base-config.
# Pour éviter le message d'introduction.
base-config base-config/intro note
# Pour éviter le dernier message.
base-config base-config/login note
# Si vous installez un gestionnaire d'affichage et si vous ne voulez pas le
# lancer immédiatemment après base-config :
#base-config base-config/start-display-manager boolean false
# Certaines versions de l'installateur peuvent dire ce que vous avez installé.
# Par défaut, rien n'est signalé. Mais l'envoi de rapport d'installation aide le projet
# à connaître les logiciels populaires.
#popularity-contest popularity-contest/participate boolean false
#### Configuration du fuseau horaire.
# Cette commande règle l'horloge matérielle sur UTC ou non :
#base-config tzconfig/gmt boolean true
# Si vous avez dit à l'installateur que vous habitez aux USA, vous pouvez
# utiliser cette valeur pour déclarer le fuseau horaire.
# (Les choix sont les suivants : Eastern, Central, Mountain, Pacific,
# Alaska, Hawaii, Aleutian, Arizona East-Indiana, Indiana-Starke, Michigan,
# Samoa, autre)
#base-config tzconfig/choose_country_zone/US select Eastern
# Si vous avez dit à l'installateur que vous habitez au Canada.
# (Choix : Newfoundland, Atlantic, Eastern, Central,
# East-Saskatchewan, Saskatchewan, Mountain, Pacific, Yukon, autre)
#base-config tzconfig/choose_country_zone/CA select Eastern
# Si vous avez dit à l'installateur que vous habitez au Brésil. (Choix :
# East, West, Acre, DeNoronha, autre)
#base-config tzconfig/choose_country_zone/BR select East
# Beaucoup de pays n'ont qu'un seul fuseau horaire. Si vous avez dit à
# l'installateur que vous habitez dans l'un de ces pays, vous pouvez le choisir
# avec cette question.
#base-config tzconfig/choose_country_zone_single boolean true
# Cette question est posée pour les pays qui n'appartiennent pas à la liste
# précédente et qui ont plusieurs fuseaux horaires. Vous pouvez préconfigurer
# l'un des fuseaux ou « autre ».
#base-config tzconfig/choose_country_zone_multiple select
#### Configuration des comptes.
# Pour préconfigurer le mot de passe de root, vous devez le mettre en clair
# dans le fichier. Ce n'est pas une très bonne idée, faites attention !
#passwd passwd/root-password password r00tme
```

```
#passwd passwd/root-password-again password r00tme
# Si vous voulez ne pas créer d'utilisateur :
#passwd passwd/make-user boolean false
# Vous pouvez aussi présélectionner le nom de l'utilisateur et son identifiant
# de connexion.
#passwd passwd/user-fullname string Debian User
#passwd passwd/username string debian
# Et le mot de passe, mais faites attention !
#passwd passwd/user-password password insecure
#passwd passwd/user-password-again password insecure
#### Configuration d'Apt..
# Cette question contrôle la source des paquets qui sera utilisée dans la
# deuxième étape de l'installation. Les choix sont cdrom, http, ftp,
# filesystem, modifier soi-même le fichier sources list.
base-config apt-setup/uri_type select http
# Si vous choisissez ftp ou http, on vous demandera un pays et un miroir.
base-config apt-setup/country select enter information manually
base-config apt-setup/hostname string http.us.debian.org
base-config apt-setup/directory string /debian
# Ne faire le choix que d'un miroir.
base-config apt-setup/another boolean false
# Vous pouvez choisir d'installer des paquets de non-free et contrib.
#base-config apt-setup/non-free boolean true
#base-config apt-setup/contrib boolean true
# Pour autoriser les mises à jour de sécurité.
base-config apt-setup/security-updates boolean true
#### Sélection des paquets.
# Vous pouvez installer toute combinaison de tâches parmi celles disponibles.
# Pour l'heure, les tâches disponibles sont les suivantes : environnement
# de bureau, serveur Web, serveur d'impression, serveur DNS, serveur de
# fichiers, serveur de courrier, base SQL, portable, système standard, sélection manuelle
# des paquets.
# La dernière utilise aptitude. Vous pouvez aussi de ne pas installer de tâches
# et de forcer l'installation de paquets par un autre moyen.
# Il est recommandé de toujours inclure la tâche Système standard
tasksel tasksel/first multiselect Desktop environment, Standard system
#tasksel tasksel/first multiselect Web server, Standard system
#### Configuration du MTA.
# Pendant une installation normale, exim pose peu de questions. Voici
# comment les éviter. Une préconfiguration plus complexe est possible.
exim4-config exim4/dc_eximconfig_configtype \
    select no configuration at this time
exim4-config exim4/no config boolean true
exim4-config exim4/no_config boolean true
```

```
# C'est une bonne idée d'indiquer ici le nom de l'utilisateur que vous avez
# créé. Si vous n'indiquez aucune valeur, le courrier pour postmaster ira dans
# /var/mail/mail.
exim4-config exim4/dc_postmaster string
#### Configuration du serveur X.
# Préconfigurer le serveur X est possible, mais vous devrez sans doute
# connaître les caractéristiques du matériel video de votre machine. Le
# configurateur Debian du serveur X ne configure rien automatiquement.
# X peut détecter le bon pilote pour certaines cartes, mais si vous faites une
# préconfiguration, vous annulez ce qu'il aura choisi. Cependant vesa
# fonctionne la plupart du temps.
#xserver-xfree86 xserver-xfree86/config/device/driver select vesa
# Pour la détection automatique de la souris, il faut savoir que si elle
# échoue, X recommence sans fin le processus. Donc, s'il y a préconfiguration,
# une boucle infinie peut apparaître si la souris n'est pas détectée.
#xserver-xfree86 xserver-xfree86/autodetect_mouse boolean true
# La détection automatique du moniteur est recommandée.
xserver-xfree86 xserver-xfree86/autodetect_monitor boolean true
# Décommentez la ligne suivante si vous posséder un écran LCD.
#xserver-xfree86 xserver-xfree86/config/monitor/lcd boolean true
# X possède trois adresses pour la configuration du moniteur. Voici comment
# présélectionner l'adresse « medium », qui est toujours disponible.
# L'adresse « simple » peut ne pas être disponible et l'adresse
# « advanced » pose trop de questions.
xserver-xfree86 xserver-xfree86/config/monitor/selection-method \
   select medium
xserver-xfree86 xserver-xfree86/config/monitor/mode-list \
   select 1024x768 @ 60 Hz
#### Les autres questions.
# Selon les logiciels que vous avez installés et s'il y a eu des problèmes
# pendant le processus d'installation, d'autres questions peuvent être posées.
# Vous pouvez bien sûr les préconfigurer ! Pour obtenir la liste de toutes
# les questions possibles, faites une installation, et exécutez ces
# commandes :
   debconf-get-selections --installer > fichier
   debconf-get-selections >> fichier
# Si vous voulez, vous pouvez inclure dans ce fichier d'autres fichiers de
# de préconfiguration. Toutes les valeurs de ces fichiers annuleront les
# valeurs préexistantes. Vous pouvez indiquer plus d'un fichier, en les
# séparant par des espaces ; tous seront chargés. Ces fichiers peuvent
# à leur tour contenir d'autres directives de préconfiguration ou d'inclusion.
# Notez que si les fichiers sont relatifs, ils seront pris dans le répertoire
# où se trouve le fichier qui les inclut.
#d-i preseed/include string x.cfg
# L'installateur peut vérifier la somme de contrôle des fichiers de
# préconfiguration avant de les utiliser. Pour le moment, cette somme doit être
# de type md5sum. Il faut lister les sommes de contrôles dans le même ordre
# que les fichiers à inclure. L'installateur de sarge
```

```
# n'accepte pas les sommes de contrôle.
#d-i preseed/include/checksum string 5da499872becccfeda2c4872f9171c3d

# D'une manière plus souple, cela exécute des commandes du shell et si le
# résultat donne les noms de ces fichiers, ils sont inclus. Par exemple,
# pour changer de configuration, selon tel périphérique de stockage USB,
# dans ce cas, un lecteur carte intégré :
#d-i preseed/include_command string \
# if $(grep -q "GUID: 0aec3050aec305000001a003" /proc/scsi/usb-storage-*/*); \
# then echo kraken.cfg; else echo otherusb.cfg; fi

# Pour vérifier le format de votre fichier de préconfiguration avant de
# commencer une installation, vous pouvez utiliser debconf-set-selections :
# debconf-set-selections -c preseed.cfg
```

C.2. Périphériques Linux

fd0

Sous Linux, vous disposez de fichiers spéciaux dans /dev. Ces fichiers sont appelés fichiers de périphérique. Dans le monde Unix, l'accès au matériel se fait de façon particulière. En effet, vous utilisez un fichier qui commande un pilote, qui à son tour accède au matériel. Le fichier de périphérique est une interface au composant système. Les fichiers sous /dev se comportent différemment des fichiers ordinaires. Ci-dessous sont repris les fichiers de périphérique les plus importants.

1er lecteur de disquette

fd1	2e lecteur de disquette
hda	Disque dur IDE ou cédérom sur le premier port IDE (maître)
hdb	Disque dur IDE ou cédérom sur le premier port IDE (esclave)
hdc	Disque dur IDE ou cédérom sur le second port IDE (maître)
hdd	Disque dur IDE ou cédérom sur le second port IDE (esclave)
hda1	1re partition sur le premier disque dur IDE
hdd15	15e partition sur le quatrième disque dur IDE
eda	Disque SCSI avec l'identificateur SCSI le plus

sda	Disque SCSI avec l'identificateur SCSI le plus
	bas (p. ex. 0)
sdb	Disque SCSI avec l'identificateur suivant (p. ex.
	1)
sdc	Disque SCSI avec l'identificateur suivant (p. ex.
	2)
sda1	1re partition du premier disque SCSI
sdd10	10e partition du quatrième disque SCSI

sr0	cédérom SCSI avec l'identificateur SCSI le plus bas
srl	cédérom SCSI avec l'identificateur SCSI suivant

ttyS0	Port série 0 (COM1: sous DOS)
ttyS1	Port série 1 (COM2: sous DOS)
psaux	port souris PS/2
gpmdata	pseudo périphérique, répétiteur du démon GPM de souris

cdrom	Lien symbolique vers le lecteur de cédérom
mouse	Lien symbolique vers le fichier de périphérique
	de la souris

null	tout ce qui pointe vers ce fichier disparaît
zero	fichier qui fabrique continuellement des zéros

C.2.1. Régler la souris

La souris peut être utilisée aussi bien dans une console Linux (avec gpm) qu'en environnement X Window. Les deux modes sont compatibles entre eux si le répétiteur gpm est utilisé afin de permettre au signal de suivre le parcours suivant :

Ajustez le protocole de répétition sur « raw » (dans /etc/gpm.conf) tandis que vous réglerez X pour utiliser le protocole original de la souris dans /etc/X11/XF86Config ou /etc/X11/XF86Config-4.

Cette approche qui préconise l'utilisation de gpm même sous X a des avantages. Si, par exemple, vous déconnectez la souris par erreur, il suffit de redémarrer gpm par

```
# /etc/init.d/gpm restart
```

et la souris recommencera à fonctionner sous X sans qu'il y ait besoin de redémarrer le serveur.

Si gpm est désactivé ou n'est pas installé, assurez-vous que X est réglé de façon à lire directement la souris à travers par exemple /dev/psaux. Pour plus de détails, reportez-vous au mini-Howto « Souris Série 3 Boutons » dans /usr/share/doc/HOWTO/en-txt/mini/3-Button-Mouse.gz, man gpm, /usr/share/doc/gpm/FAQ.gz, et README.mouse (http://www.xfree86.org/current/mouse.html).

C.3. Ressources d'espace disque pour les tâches

Une installation de base, avec le noyau 2.4 par défaut et tous les paquets standard, demande 573 Mo.

Le tableau suivant montre les tailles rapportées par aptitude pour les tâches affichées dans tasksel. Certaines tâches ont des éléments communs, et donc la taille totale pour ces deux tâches peut être moindre que le total obtenu en additionnant les deux tailles.

Pour déterminer la dimension d'une partition, vous devez ajouter les tailles dans le tableau et la taille de l'installation de base. Ce que représente « Taille installée » va dans /usr; et ce que représente « Taille à charger » va (provisoirement) dans /var.

Tâches	Taille Installée (Mo)	Taille à charger (Mo)	Espace à prendre (Mo)
Desktop	1392	460	1852
Serveur web	36	12	48
Serveur d'impression	168	58	226
serveur DNS	2	1	3
Serveur de fichiers	47	24	71
serveur de courrier	10	3	13
Base de données SQL	66	21	87

Note: La tâche Desktop installe à la fois les environnements Gnome et Kde.

Si vous faites une installation dans une langue autre que l'anglais, **tasksel** installera d'abord une *locale* s'il en existe une pour votre langue. Chaque langue demande un espace disque. Vous devriez accorder 200 Mo pour l'installation et le téléchargement.

C.4. Installer Debian GNU/Linux à partir d'un système Unix/Linux

Cette partie explique comment installer Debian GNU/Linux à partir d'un système Unix ou Linux existant, sans utiliser le système d'installation avec menus qui est exposé dans la suite de ce manuel. Les utilisateurs qui changeaient leur distribution Red Hat, Mandrake et Suse pour Debian GNU/Linux réclamaient ce guide d'installation. Dans cette partie, on suppose que le lecteur a acquis une certaine familiarité avec les commandes *nix et qu'il sait parcourir le système de fichiers. \$ symbolisera une commande qui devra être saisie dans le système actuel, alors que # fera référence à une commande qui devra être saisie dans le chroot Debian.

Une fois que vous aurez configuré le nouveau système Debian, vous pourrez y installer les données des utilisateurs (s'il y en a), et continuer à travailler. Debian GNU/Linux s'installe sans aucune interruption de service. C'est également une façon intelligente de résoudre les problèmes d'équipement qui, d'ordinaire, donnent du fil à retordre aux systèmes d'installation ou aux systèmes d'amorçage.

C.4.1. Pour commencer

Avec votre outil habituel de partitionnement *nix, partitionnez le disque dur et créez au moins un système de fichiers ainsi qu'une zone d'échange (swap). Vous devez disposer d'au moins 150 Mo pour l'installation d'un système en mode console et d'au moins 300 Mo si vous avez l'intention d'installer X.

Pour créer un système de fichiers sur vos partitions, par exemple, pour créer un système de fichiers ext3 sur la partition /dev/hda6 (ce sera la partition racine dans notre exemple), il suffit de faire :

```
# mke2fs -j /dev/hda6
```

Pour créer un système de fichier ext2, il suffit d'enlever le -j.

Initialisez et activez la zone d'échange (swap) (modifiez le numéro de la partition en fonction de celui que vous souhaitez utiliser avec Debian) :

```
# mkswap /dev/hda5
# sync; sync; sync
# swapon /dev/hda5
```

Montez une partition sur /mnt/debinst (le point d'installation, qui deviendra le système de fichier racine (/) sur votre nouveau système). Le point de montage est totalement arbitraire, c'est de cette façon qu'on y fera référence par la suite.

```
# mkdir /mnt/debinst
# mount /dev/hda6 /mnt/debinst
```

Note : Si vous voulez que certaines parties du système de fichiers (p. ex /usr) soient montées sur des partitions distinctes, vous devez créer et monter ces répertoires vous-même avant de commencer l'étape suivante.

C.4.2. Installer debootstrap

L'outil utilisé par l'installateur Debian et reconnu comme outil officiel pour installer un système Debian de base s'appelle **debootstrap**. Il utilise **wget** et **ar**, mais ne dépend que de /bin/sh. Installez **wget** et **ar** s'ils ne sont pas déjà installés sur votre système, puis téléchargez et installez **debootstrap**.

Si vous possédez un système basé sur rpm, vous pouvez utiliser alien pour convertir le .deb en .rpm, ou télécharger une « version rpm-isée » depuis http://people.debian.org/~blade/install/debootstrap

Ou, vous pouvez utiliser la procédure qui suit pour l'installer vous-même. Créez un répertoire pour y décompresser le .deb :

```
# mkdir work
# cd work
```

Le programme **debootstrap** se trouve dans l'archive Debian (assurez-vous d'avoir sélectionné le fichier correspondant à votre architecture). Téléchargez le **debootstrap** .deb à partir de pool (http://ftp.debian.org/debian/pool/main/d/debootstrap/), copiez le paquet dans le répertoire de travail,

et décompressez les fichiers binaires. Vous aurez besoin d'avoir les droits du superutilisateur pour installer le binaire.

```
# ar -x debootstrap_0.X.X_arch.deb
# cd /
# zcat /full-path-to-work/work/data.tar.gz | tar xv
```

Il faut noter que pour exécuter **debootstrap** vous devez installer une version de glibc au moins égale à GLIBC_2.3. **Debootstrap** est seulement un script mais il appelle différents utilitaires qui exigent glibc.

C.4.3. Lancer debootstrap

Debootstrap peut télécharger les fichiers nécessaires directement depuis l'archive debian. Vous pouvez remplacer toutes les références à http.us.debian.org/debian dans les commandes ci-dessous, par un miroir de l'archive Debian qui se trouve à proximité de chez vous, relativement au réseau. Les miroirs sont listés sur http://www.debian.org/misc/README.mirrors.

Si vous possédez une version cédérom de Debian GNU/Linux sarge, montée sur /cdrom, vous pouvez remplacer l'URL http par l'URL d'un fichier : file:/cdrom/debian/

Dans la commande **debootstrap** remplacez ARCH par l'une des expressions suivantes : alpha, arm, hppa, i386, ia64, m68k, mips, mipsel, powerpc, s390, ou sparc.

```
# /usr/sbin/debootstrap --arch ARCH sarge \
    /mnt/debinst http://http.us.debian.org/debian
```

C.4.4. Configurer le sytème de base

Maintenant vous disposez d'un vrai système Debian, certes un peu élémentaire. Lancez le programme **Chroot** :

```
# chroot /mnt/debinst /bin/bash
```

C.4.4.1. Monter les partitions

Vous devez créer /etc/fstab.

```
# editor /etc/fstab
```

Voici un exemple que vous pouvez modifier à votre convenance :

```
# /etc/fstab: static file system information.
#
# file system mount point type options dump pass
/dev/XXX / ext3 defaults 0 1
```

/dev/XXX	/boot	ext3	ro,nosuid,nodev	0	2
				•	•
/dev/XXX	none	swap	SW	0	0
proc	/proc	proc	defaults	0	0
/dev/fd0	/mnt/floppy	auto	<pre>noauto,rw,sync,user,exec</pre>	0	0
/dev/cdrom	/mnt/cdrom	iso9660	noauto,ro,user,exec	0	0
/dev/XXX	/tmp	ext3	rw,nosuid,nodev	0	2
/dev/XXX	/var	ext3	rw,nosuid,nodev	0	2
/dev/XXX	/usr	ext3	rw,nodev	0	2
/dev/XXX	/home	ext3	rw,nosuid,nodev	0	2

Utilisez mount -a pour monter l'ensemble des systèmes de fichiers que vous avez indiqué dans votre fichier /etc/fstab, ou alors pour monter un à un chaque système de fichiers, utilisez :

```
# mount /path # e.g.: mount /usr
```

Vous pouvez monter le système de fichiers proc plusieurs fois et à divers endroits, cependant on choisit d'habitude /proc. Si vous n'utilisez pas mount -a, assurez-vous d'avoir monté proc avant d'aller plus loin :

```
# mount -t proc proc /proc
```

La commande ls /proc affiche maintenant un répertoire non vide. Si cela échoue, vous pouvez monter proc hors du chroot de cette manière :

```
# mount -t proc proc /mnt/debinst/proc
```

C.4.4.2. Configurer le clavier

Pour configurer votre clavier exécutez :

```
# dpkg-reconfigure console-data
```

Il faut noter que le clavier ne peut pas être configuré à l'intérieur du chroot. Il sera configuré au prochain démarrage de la machine.

C.4.4.3. Configurer le réseau

Pour configurer le réseau, éditez les fichiers /etc/network/interfaces, /etc/resolv.conf, et etc/hostname.

```
# editor /etc/network/interfaces
```

Voici quelques exemples simples qui proviennent de /usr/share/doc/ifupdown/examples:

```
# /etc/network/interfaces -- configuration file for ifup(8), ifdown(8)
# See the interfaces(5) manpage for information on what options are
# available.
# We always want the loopback interface.
auto lo
iface lo inet loopback
# To use dhcp:
# auto eth0
# iface eth0 inet dhcp
# An example static IP setup: (broadcast and gateway are optional)
# auto eth0
# iface eth0 inet static
    address 192.168.0.42
    network 192.168.0.0
#
    netmask 255.255.255.0
   broadcast 192.168.0.255
     gateway 192.168.0.1
Indiquez vos serveurs de noms et les directives search dans le fichier /etc/resolv.conf:
# editor /etc/resolv.conf
Un simple /etc/resolv.conf:
# search hqdom.local\000
# nameserver 10.1.1.36
# nameserver 192.168.9.100
Indiquez le nom de votre système (de 2 à 63 caractères) :
```

Si vous possédez plusieurs cartes réseau, faites en sorte d'indiquer par ordre les modules que vous voulez charger dans le fichier /etc/modules. De cette façon, lors du démarrage, chaque carte sera associée avec le nom d'interface (eth0, eth1, etc.) que vous souhaitiez.

C.4.4.4. Configurer le fuseau horaire, les utilisateurs et le progreamme APT

Configurez le fuseau horaire, ajoutez un utilisateur normal, et choisissez vos sources apt en exécutant

```
# /usr/sbin/base-config new
```

echo DebianHostName > /etc/hostname

C.4.4.5. Configurer les locales

Pour configurer les paramètres locaux, pour l'utilisation d'une autre langue que l'anglais, installez le paquet des locales puis configurez-le :

```
# apt-get install locales
# dpkg-reconfigure locales
```

NOTE : Vous devez au préalable configurer apt, c'est-à-dire lors de l'étape de configuration du système de base. Avant d'utiliser les locales avec un jeu de caractères différent de l'ASCII ou de latin1, veuillez consulter les HOWTO sur la localisation.

C.4.5. Installer un noyau

Si vous avez l'intention de démarrer ce système, vous aurez vraisemblablement besoin d'un noyau Linux ainsi que d'un gestionnaire de démarrage. Identifiez les paquets contenant des noyaux avec :

```
# apt-cache search kernel-image
```

Puis installez celui que vous voulez en utilisant son nom de paquet.

```
# apt-get install kernel-image-2.X.X-arch-etc
```

C.4.6. Configurer le programme d'amorçage

Pour que votre système Debian GNU/Linux puisse démarrer, configurez le programme d'amorçage pour qu'il charge le noyau installé avec votre nouvelle partition racine. Debootstrap n'installe pas de programme d'amorçage mais vous pouvez utiliser apt-get pour en installer un.

Annexe D. Administrivia

D.1. À propos de ce document

Ce manuel a été créé pour l'installateur de la distribution Sarge. Il est basé sur le manuel de l'installateur de la distribution Woody, qui lui-même était basé sur d'anciens manuels d'installation de Debian. Il est aussi basé sur le manuel de la distribution Progeny, distribué sous GPL en 2003.

Ce document est écrit au format DocBook XML. Les textes produits sont créés par différents programmes à partir des paquets docbook-xml et docbook-xsl.

Pour faciliter la maintenance de ce document, nous utilisons certaines fonctionnalités XML, telles qu'entités et attributs de particularisation. Ils jouent le même rôle que les variables et les conditions dans les langages de programmation. La source XML de ce document contient des informations pour chaque architecture — les attributs de particularisation sont utilisés afin d'isoler certaines parties du texte spécifiques à une architecture donnée.

Toutes les remarques sur cette traduction, coordonnée par Philippe Batailler, sont à envoyer à l'adresse <debian-110n-french@lists.debian.org>.

D.2. Pour contribuer à ce document

Si vous avez des questions ou des suggestions à propos de ce document, vous pouvez envoyer un rapport de bogue concernant le paquet debian-installer-manual. Voyez le paquet reportbug ou lisez la documentation en ligne disponible dans le système de suivi des bogues (http://bugs.debian.org/). Ce serait bien si vous pouviez vérifier dans les bogues ouverts à propos du manuel de l'installateur (http://bugs.debian.org/debian-installer-manual) que votre problème n'a pas déjà été signalé. Si c'est le cas, vous pouvez confirmer le bogue ou donner des informations complémentaires à l'adresse <xxxx@bugs.debian.org>, où xxxx est le numéro du bogue en question.

Encore mieux, procurez-vous une copie des sources docbook de ce document et proposez des correctifs. Les sources docbook sont disponibles dans le WebSVN de l'installateur (http://svn.debian.org/wsvn/d-i/). Ne vous inquiétez pas si vous ne connaissez pas bien docBook : une note rapide dans le répertoire du manuel vous mettra sur la voie. DocBook est comme html, mais on s'intéresse au sens du texte plutôt qu'à sa présentation. On peut envoyer des correctifs à la liste de discussion debian-boot, voyez plus bas. Pour accéder aux sources par CVS, consultez le fichier README (http://svn.debian.org/wsvn/d-i/README?op=file) dans le répertoire racine des sources.

Veuillez *ne pas* contacter les auteurs de ce document directement. Il existe une liste de diffusion pour l'installateur Debian qui discute de ce document. L'adresse de la liste de diffusion est <debian-boot@lists.debian.org>. Les instructions pour s'abonner sont disponibles à la page d'abonnement aux listes de diffusion Debian (http://www.debian.org/MailingLists/subscribe); une copie de cette liste peut être consultée en ligne dans les archives des listes de diffusion Debian (http://lists.debian.org/).

D.3. Principales contributions

Bruce Perens, Sven Rudolph, Igor Grobman, James Treacy, et Adam Di Carlo sont les premiers au-

teurs de ce texte. Sebastian Ley a écrit le Guide d'installation. Beaucoup, beaucoup d'utilisateurs et de développeurs Debian ont participé à ce document. On doit mentionner particulièrement Michael Schmitz (pour m68k), Frank Neumann (à l'origine du guide d'installation de Debian sur Amiga (http://www.informatik.uni-oldenburg.de/~amigo/debian_inst.html)), Arto Astala, Eric Delaunay et Ben Collins (SPARC information), Tapio Lehtonen et Stéphane Bortzmeyer pour de nombreux textes. Nous remercions aussi Pascal Le Bail pour ses informations sur la manière d'amorcer à partir des clés USB.

Des informations extrêmement utiles ont été piochées dans le HOWTO sur le démarrage réseau de Jim Mintha (pas d'URL disponible), la FAQ Debian (http://www.debian.org/doc/FAQ/), la FAQ Linux/m68k (http://www.linux-m68k.org/faq/faq.html), la FAQ Linux pour processeurs SPARC (http://www.ultralinux.org/faq.html), la FAQ Linux/Alpha (http://linux.iol.unh.edu/linux/alpha/faq/), et d'autres encore. Que les auteurs de ces sources d'informations riches et librement accessibles soient remerciés.

La section de ce manuel « Installer debian à partir d'un système Unix/Linux » (Section C.4) est partiellement reprise d'un document avec copyright Karsten M. Self.

D.4. Marques déposées

Les marques déposées citées dans ce document appartiennent à leurs propriétaires.

Annexe E. GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. — 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

E.1. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the gnu General Public License is intended to guarantee your freedom to share and change free software — to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the gnu Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

E.2. GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

• This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program",

below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does

You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

- You may modify your copy or copies of the Program or any portion of it, thus forming a work based
 on the Program, and copy and distribute such modifications or work under the terms of Section 1
 above, provided that you also meet all of these conditions:
 - a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
 - b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
 - c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

• You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the

following:

- a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
- b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
- c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

- You may not copy, modify, sublicense, or distribute the Program except as expressly provided
 under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
 void, and will automatically terminate your rights under this License. However, parties who have
 received copies, or rights, from you under this License will not have their licenses terminated so
 long as such parties remain in full compliance.
- You are not required to accept this License, since you have not signed it. However, nothing else
 grants you permission to modify or distribute the Program or its derivative works. These actions
 are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
 Program (or any work based on the Program), you indicate your acceptance of this License to do
 so, and all its terms and conditions for copying, distributing or modifying the Program or works
 based on it.
- Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.
- If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

- If the distribution and/or use of the Program is restricted in certain countries either by patents or
 by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that
 distribution is permitted only in or among countries not thus excluded. In such case, this License
 incorporates the limitation as if written in the body of this License.
- The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.
- If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

- because the program is licensed free of charge, there is no warranty for the program, to the extent permitted by applicable law. except when otherwise stated in writing the copyright holders and/or other parties provide the program "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, the entire risk as to the quality and performance of the program is with you, should the program prove defective, you assume the cost of all necessary servicing, repair or correction.
- in no event unless required by applicable law or agreed to in writing will any copyright holder, or
 any other party who may modify and/or redistribute the program as permitted above, be liable to
 you for damages, including any general, special, incidental or consequential damages arising out
 of the use or inability to use the program (including but not limited to loss of data or data being
 rendered inaccurate or losses sustained by you or third parties or a failure of the program to operate
 with any other programs), even if such holder or other party has been advised of the possibility of
 such damages.

END OF TERMS AND CONDITIONS

E.3. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the

best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify it under the terms of the gnu General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the gnu General Public License for more details.

You should have received a copy of the gnu General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with absolutely no warranty; for details type 'show w'.

This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than 'show w' and 'show c'; they could even be mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program 'Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the gnu Library General Public License instead of this License.