Definitions
Leading dimensions
Many algorithms can be applied exactly the same to a variable even though it may have different dimension dependencies. For instance, a density conversion can be the same algorithm for either density {}, density {time}, density {latitude,longitude}, density {time,vertical}, etc. The algorithm is just applied element-wise for each element in the dimensions that density depends on. Such leading dimensions that can be handled element-wise are captured by a ‘:’ in the variable reference in the definitions below. Any dimensions that are significant for the conversion (for instance, the vertical dimension when integrating a vertical profile to a total column) will still be mentioned explicitly and will map to an index in the symbol used for the quantity (e.g. \(\nu(:,i)\)). If an algorithm has variables with a ‘:’ in the dimension specification then the algorithm will contain a description of which combination of dimensions are supported for ‘:’.
Constants
| symbol | name | unit | value |
|---|---|---|---|
| \(a\) | WGS84 semi-major axis | \(m\) | \(6378137.0\) |
| \(b\) | WGS84 semi-minor axis | \(m\) | \(6356752.314245\) |
| \(c\) | speed of light | \(\frac{m}{s}\) | \(2.99792458\cdot10^{8}\) |
| \(\frac{1}{f}\) | WGS84 inverse flatting | \(298.257223563\) | |
| \(g_{0}\) | mean earth gravity | \(\frac{m}{s^2}\) | \(9.80665\) |
| \(g_{e}\) | earth gravity at equator | \(\frac{m}{s^2}\) | \(9.7803253359\) |
| \(g_{p}\) | earth gravity at poles | \(\frac{m}{s^2}\) | \(9.8321849378\) |
| \(GM\) | WGS84 earth’s gravitational constant | \(\frac{m^3}{s^2}\) | \(3986004.418\cdot10^{8}\) |
| \(k\) | Boltzmann constant | \(\frac{kg m^2}{K s^2}\) | \(1.38064852\cdot10^{-23}\) |
| \(N_A\) | Avogadro constant | \(\frac{1}{mol}\) | \(6.022140857\cdot10^{23}\) |
| \(p_{0}\) | standard pressure | \(Pa\) | \(101325\) |
| \(R\) | universal gas constant | \(\frac{kg m^2}{K mol s^2}\) | \(8.3144598\) |
| \(T_{0}\) | standard temperature | \(K\) | \(273.15\) |
| \(\omega\) | WGS84 earth angular velocity | \(rad/s\) | \(7292115.0\cdot10^{-11}\) |
Molar mass
The following table provides for each species the molar mass \(M_{x}\) in \(\frac{g}{mol}\).
See the documentation on the HARP data format for a description of all species.
| name | molar mass |
|---|---|
| dry air | 28.9644 |
| BrO | 95.9034 |
| BrO2 | 111.9028 |
| CCl2F2 | 120.9135 |
| CCl3F | 137.3681 |
| CCl4 | 153.822 |
| CF4 | 88.00431 |
| CHClF2 | 86.4684 |
| CH3Cl | 50.48752 |
| CH3CN | 41.05192 |
| CH3OH | 32.04186 |
| CH4 | 16.0425 |
| CO | 28.0101 |
| COF2 | 66.0069 |
| COS | 60.0751 |
| CO2 | 44.0095 |
| C2H2 | 26.0373 |
| C2H2O2 | 58.036163 |
| C2H6 | 30.0690 |
| C2H3NO5 | 121.04892 |
| C3H8 | 44.09562 |
| C5H8 | 68.11702 |
| ClNO3 | 97.4579 |
| ClO | 51.4524 |
| HCHO | 30.026 |
| HCOOH | 46.0254 |
| HCN | 27.0253 |
| HCl | 36.4609 |
| HF | 20.006343 |
| HNO2 | 47.013494 |
| HNO3 | 63.0129 |
| HNO4 | 79.0122 |
| HOCl | 52.4603 |
| HO2 | 33.00674 |
| H2O | 18.0153 |
| H2O_161 | 1.00782503207 + 15.99491461956 + 1.00782503207 |
| H2O_162 | 1.00782503207 + 15.99491461956 + 2.0141017778 |
| H2O_171 | 1.00782503207 + 16.99913170 + 1.00782503207 |
| H2O_181 | 1.00782503207 + 17.9991610 + 1.00782503207 |
| H2O2 | 34.01468 |
| IO | 142.903873 |
| NH3 | 17.03056 |
| NO | 30.00610 |
| NOCl | 65.4591 |
| NO2 | 46.00550 |
| NO3 | 62.0049 |
| N2 | 28.01340 |
| N2O | 44.0129 |
| N2O5 | 108.0104 |
| OClO | 67.4518 |
| OH | 17.00734 |
| O2 | 32.000 |
| O3 | 47.99820 |
| O3_666 | 15.99491461956 + 15.99491461956 + 15.99491461956 |
| O3_667 | 15.99491461956 + 15.99491461956 + 16.99913170 |
| O3_668 | 15.99491461956 + 15.99491461956 + 17.9991610 |
| O3_686 | 15.99491461956 + 17.9991610 + 15.99491461956 |
| O4 | 63.9976 |
| SF6 | 146.0554 |
| SO2 | 64.0638 |